
Intrinsically Motivated Affordance Learning
Stephen Hart Rod Grupen

Laboratory for Perceptual Robotics
University of Massachusetts Amherst

Amherst, MA 01003
{shart,grupen}@cs.umass.edu

I. INTRODUCTION

This paper presents an intrinsic motivation function called
the multi-modal imperative (MMI) that can be used by
sensorimotor systems to learn deep control knowledge about
behavioral affordances [1]. It builds upon the control basis
framework and has been used to teach the bimanual robot
Dexter (Figure 1) general purpose manipulation skills and
commonsense knowledge about objects.

In the following sections, we describe the control basis
and summarize existing and new work using the multi-
modal imperative. In particular, we demonstrate how the
MMI can govern the acquisition of a series of hierarchical
manipulation skills [3], generalize those skills to new situ-
ations [2], and govern the exploration of affordance-based
memory structures concerning objects.

Fig. 1. The bimanual robot Dexter.

II. THE CONTROL BASIS

The control basis framework provides a combinatoric
means of constructing hierarchical and multi-objective
closed-loop programs from a robot’s sensory and motor
resources, and is diagrammed in Figure 2. The control
basis framework supports principled mechanisms for the
following:

• Parameterizable Control Actions: Primitive actions
in the control basis framework are closed-loop feed-
back controllers constructed by combining a potential
function φ ∈ Ωφ, with a feedback signal σ ∈ Ωσ , and
motor variables τ ∈ Ωτ into a control action c(φ, σ, τ).
In any such configuration, φ(σ) is a scalar potential
function (e.g., a navigation function [5]) defined to
satisfy properties that guarantee asymptotic stability.

• Co-Articulation: Multi-objective control actions that
support co-articulated behavior are constructed by com-
bining control primitives in a prioritized manner. Con-
currency is achieved by projecting subordinate/inferior

Fig. 2. This diagram shows our hierarchical control architecture. Control
actions greedily descend local-minima-free potential fields, sending refer-
ence signals to low-level feedback loops that guarantee stable performance
at the hardware level. Programs written on top of these control applications
descend value functions that guarantee adaptive-optimal performance.

actions into the nullspace of superior actions, and is
denoted cinf / csup. This prioritized mapping assures
that inferior control inputs do not destructively interfere
with superior objectives and can be extended to n-fold
concurrency relations.

• State Estimation: The error dynamics (φ, φ̇) created
when a controller interacts with the task domain sup-
ports a natural discrete abstraction of the underlying
continuous state space [4]. One simple discrete state
definition based on quiescence events and controller
relevance was proposed in [3]. Quiescence events occur
when a controller reaches an attractor state in its poten-
tial. A collection of n distinct primitive control actions,
therefore, define a discrete, robot-centric state/action
space from which programs can be assembled.

• Behavioral Programming: Sensorimotor programs are
learned in the control basis framework given the
state and action spaces S and A defined by the set
{Ωφ,Ωσ,Ωτ} and a reward function R. Formulating the
learning problem as a Markov Decision Process (MDP),
allows a learning agent to estimate the value, Φ(s, a),
of taking an action a in a state s using reinforcement
learning (RL) techniques [6]. Representing behavior in
terms of a value function provides a natural hierarchical
representation for control basis programs where attrac-
tor states of the value function capture quiescence events
in the policy. As a result, the state of a program can be
captured using the same state representation as above,
even though that program may have its own complex
transition dynamics.



III. INTRINSICALLY MOTIVATED AFFORDANCES

In [3], we provide an intrinsic reward function called the
multi-modal imperative that provides a measure of value to
control basis programs. It rewards control actions that afford
controllable interaction with the environment—measured
through a controller’s dynamics—and allows robots to au-
tonomously acquire rich behavioral knowledge. the multi-
modal imperative provides reward for the following criteria:

• Stable Control Response: Reward occurs if the robot
can respond stably to feedback it receives from its
environment. We capture such stability in terms of
controller quiescence.

• Stimuli Regulation: Reward occurs only for quiescence
events on controllers that reduce input errors from direct
sensory feedback signals. In other words, those that
achieve a degree of stimuli regulation between the robot
and its environment.

• Deep Knowledge Construction: Reward increases as
the robot discovers rich areas of stable control events
(e.g., a manipulatable object). To achieve this criteria,
we define a memory structure called a catalog, C, that
records collections of rewarding control affordances that
occur together with some regularity.

In the next sections, we briefly describe how this single
MMI has been used to address three different aspects of
sensorimotor learning in the same unifying framework.

A. Hierarchical Manipulation

The multi-modal imperative has successfully been used to
teach the bimanual robot Dexter (Figure 1) the following
manipulation behaviors—many of which employ other of
these same behaviors hierarchically—through a series of
learning stages:

• SEARCHTRACK: This program allows the robot to
posture itself in configurations where various stimuli
tend to occur in the environment and then track that
stimuli. It has been applied successfully to allow Dexter
to saccade to and track various visual cues (such as
highly saturated regions of interest), or to move its
fingers into contact with objects it can grab.

• REACHGRAB: This program allows the robot to find
objects in its workspace, to reach out to them, and to
grab them.

• VISUALINSPECT: This program allows Dexter to pick
up objects and move them to a place where its stereo
cameras are well conditioned to observe those objects
with high acuity.

• HANDTRANSFER: This allows Dexter to transfer
grabbed objects between its two hands.

• PICKANDPLACE: This allows Dexter to pick up objects
and place them in other locations, while controlling
the interaction forces between the object and goal. It
provides the general structure multi-object interactions
such as stacking, inserting, etc.

The learning experiments for some of these behaviors are
reported in [3] and forthcoming publications.

B. Transfer and Generalization

The multi-modal imperative also provides a means to
structure the generalization of control programs to novel
situations [2]. Generalization is possible because the sensory
and effector resources, Ωσ and Ωτ , in the control basis adhere
to strict typing constraints such that only certain sensors and
certain effectors may be combined with a certain objective
functions.

Generalization is achieved by factoring learned policies
into declarative and procedural parts. The declarative com-
ponent maintains a policy of the typed objective functions
that will achieve reward, while procedural component pro-
vides information pertaining to which sensory and motor
resources should be “attached” to those objective functions
based on the run-time context.

The result is that programs learned in one situation can
bootstrap learning in a different, but related context. [2]
demonstrated how the program REACHGRAB learned using
Dexter’s left hand, was generalized to afford situations where
the robot could employ right-handed are bimanual grasps
on objects based on reference inputs to the robot’s control
actions pertaining to the size, location, and velocity of the
objects to be acquired.

C. Affordance-Based Memory

Finally, the single MMI intrinsic reward function has
been used to govern the development of Dexter to produce
behavior that is typically achieved in the literature only
through separate intrinsic reward functions for habituation,
novelty, and surprise. A complete description of this work
will be provided in a forthcoming publication.

To achieve this, Dexter builds statistical distributions about
the real-valued inputs to rewarding control actions that
engage objects, capturing which situations do and do not lead
to reward. These distributions are captured in the catalog C,
and have their own dynamics. Models that have high variance
encourage the robot to engage objects more often; as models
become more predictable, the robot will habituate on those
objects. If the predictability later changes, the robot will be
“surprised” and re-engage the objects.

REFERENCES

[1] J. Gibson. The theory of affordances. In Perceiving, acting and
knowing: toward an ecological psychology, pages 67–82, Hillsdale, NJ,
1977. Lawrence Erlbaum Associates Publishers.

[2] S. Hart, S. Sen, and R. Grupen. Generalization and transfer in
robot control. In 8th International Conference on Epigenetic Robotics
(Epirob08), 2008.

[3] S. Hart, S. Sen, and R. Grupen. Intrinsically motivated hierarchical
manipulation. In Proceedings of the 2008 IEEE Conference on Robots
and Automation (ICRA), Pasadena, California, 2008.

[4] M. Huber and R. Grupen. Learning to coordinate controllers -
reinforcement learning on a control basis. In Proceedings of the Fif-
teenth International Joint Conference on Artificial Intelligence (IJCAI),
Nagoya, JP, August 1997. IJCAI.

[5] D.E. Koditschek and E. Rimon. Robot navigation functions on mani-
folds with boundary. Advances in Applied Mathematics, 11(4):412–442,
1990.

[6] R. Sutton and A. Barto. Reinforcement Learning. MIT Press,
Cambridge, Massachusetts, 1998.


