
Variable risk control via stochastic
optimization

The International Journal of
Robotics Research
32(7) 806–825
© The Author(s) 2013
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0278364913476124
ijr.sagepub.com

Scott R Kuindersma1,2, Roderic A Grupen2 and Andrew G Barto2

Abstract
We present new global and local policy search algorithms suitable for problems with policy-dependent cost variance
(or risk), a property present in many robot control tasks. These algorithms exploit new techniques in non-parametric
heteroscedastic regression to directly model the policy-dependent distribution of cost. For local search, the learned cost
model can be used as a critic for performing risk-sensitive gradient descent. Alternatively, decision-theoretic criteria
can be applied to globally select policies to balance exploration and exploitation in a principled way, or to perform
greedy minimization with respect to various risk-sensitive criteria. This separation of learning and policy selection permits
variable risk control, where risk-sensitivity can be flexibly adjusted and appropriate policies can be selected at runtime
without relearning. We describe experiments in dynamic stabilization and manipulation with a mobile manipulator that
demonstrate learning of flexible, risk-sensitive policies in very few trials.
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1. Introduction

Experiments on physical robot systems are typically asso-
ciated with significant practical costs, such as experimenter
time, money, and robot wear and tear. However, such exper-
iments are often necessary to refine controllers that have
been hand designed or optimized in simulation. This neces-
sity is a result of the extreme difficulty associated with
constructing model systems of sufficiently high fidelity that
behaviors translate to hardware without performance loss.
For many nonlinear systems, it can even be infeasible to per-
form simulations or construct a reasonable model (Roberts
et al., 2010).

For this reason, model-free policy search methods have
become one of the standard tools for constructing con-
trollers for robot systems (Rosenstein and Barto, 2001;
Kohl and Stone, 2004; Tedrake et al., 2004; Peters and
Schaal, 2006; Lizotte et al., 2007; Kober and Peters, 2009;
Kolter and Ng, 2010; Theodorou et al., 2010). These algo-
rithms are designed to minimize the expected value of a
noisy cost signal, Ĵ (θ ), by adjusting policy parameters, θ ,
for a fixed class of policies, u = πθ ( x, t). By consider-
ing only the expected cost of a policy and ignoring cost
variance, the solutions found by these algorithms are by
definition risk-neutral, where risk corresponds to a mono-
tonic function of the cost variance. However, for systems
that operate in a variety of contexts, it can be advantageous
to have a more flexible attitude toward risk.

For example, imagine a humanoid robot that is capable
of several dynamic walking gaits that differ based on their
efficiency, speed, and predictability. When operating near
a large crater, it might be reasonable to select a more pre-
dictable, possibly less energy-efficient gait over a less pre-
dictable, higher performance gait. Likewise, when far from
a power source with low battery charge, it may be necessary
to risk a fast and less predictable policy because alternative
gaits have comparatively low probability of achieving the
required speed or efficiency. To create flexible systems of
this kind, it will be necessary to design optimization pro-
cesses that produce control policies that differ based on
their risk.

Recently there has been increased interest in applying
Bayesian optimization algorithms to solve model-free pol-
icy search problems (Lizotte et al., 2007; Martinez-Cantin
et al., 2007, 2009; Kuindersma et al., 2011; Tesch et al.,
2011; Wilson et al., 2011). In contrast to well-studied policy
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gradient methods (Peters and Schaal, 2006), Bayesian opti-
mization algorithms perform policy search by modeling the
distribution of cost in policy parameter space and apply-
ing a selection criterion to globally select the next policy.
Selection criteria are typically designed to balance explo-
ration and exploitation with the intention of minimizing the
total number of policy evaluations. These properties make
Bayesian optimization attractive for robotics since cost
functions often have multiple local minima and policy eval-
uations are typically expensive. It is also straightforward to
incorporate approximate prior knowledge about the distri-
bution of cost (such as could be obtained from simulation)
and enforce hard constraints on the policy parameters.

Previous implementations of Bayesian optimization have
assumed that the variance of the cost is the same for all
policies in the search space. This is not true in general.
In this work, we propose a new type of Bayesian opti-
mization algorithm that relaxes this assumption and effi-
ciently captures both the expected cost and cost variance
during the optimization. Specifically, we extend recent work
developing a variational Gaussian process (GP) model for
problems with input-dependent noise (or heteroscedastic-
ity) (Lázaro-Gredilla and Titsias, 2011) to the optimization
case by deriving an expression for expected improvement
(EI) (Moc̆kus et al., 1978), a commonly used criterion
for selecting the next policy, and incorporating log priors
into the optimization to improve numerical performance.
We also consider the use of confidence bounds (CBs) to
produce runtime changes to risk-sensitivity and derive a
generalized expected risk improvement (ERI) criterion that
balances exploration and exploitation in risk-sensitive set-
ting. Finally, we consider a simple local search procedure
that uses the learned cost model as a critic for perform-
ing risk-sensitive stochastic gradient descent (RSSGD).
We evaluate these algorithms in dynamic stabilization
and manipulation experiments with the uBot-5 mobile
manipulator.

2. Background

2.1. Bayesian optimization

Bayesian optimization algorithms are a family of global
optimization techniques that are well suited to problems
where noisy samples of an objective function are expen-
sive to obtain (Lizotte et al., 2007; Frean and Boyle, 2008;
Brochu et al., 2009; Martinez-Cantin et al., 2009; Tesch
et al., 2011; Wilson et al., 2011). In describing these algo-
rithms, we use the language of policy search where the
inputs are policy parameters and outputs are costs. How-
ever, these algorithms are applicable to general stochas-
tic nonlinear optimization problems not related to control
(Brochu et al., 2009).

2.1.1. GPs Most Bayesian optimization implementations
represent the prior over cost functions as a GP. A GP is

defined as a (possibly infinite) set of random variables,
any finite subset of which is jointly Gaussian distributed
(Rasmussen and Williams, 2006). In our case the random
variable is the cost, Ĵ (θ ), which is indexed by the set of pol-
icy parameters. The GP prior, J (θ )∼ GP( m( θ ) , kf (θ , θ ′)),
is fully specified by its mean function and covariance (or
kernel) function,

m( θ ) = E[J (θ ) ],

kf ( θ , θ ′) = E[( J ( θ )−m( θ ′)) ( J ( θ )−m( θ ′)) ].

Typically, we set m( θ )= 0 and let kf ( θ , θ ′) take on one of
several standard forms. A common choice is the anisotropic
squared exponential kernel,

kf ( θ , θ ′)= σ 2
f exp

(
−1

2
( θ − θ ′)�M( θ − θ ′)

)
, (1)

where σ 2
f is the signal variance and M = diag( �−2

f ) is
a diagonal matrix of length-scale hyperparameters. Intu-
itively, the signal variance hyperparameter captures the
overall magnitude of the cost function variation and the
length-scales capture the sensitivity of the cost with respect
to changes in each policy parameter. The squared exponen-
tial kernel is stationary since it is a function of θ − θ ′, i.e.
it is invariant to translations in parameter space. In some
applications, the target function will be non-stationary:
flat in some regions, with large changes in others. There
are kernel functions appropriate for this case (Rasmussen
and Williams, 2006), but in this work we use the squared
exponential kernel (1) exclusively.

Samples of the unknown cost function are typically
assumed to have additive independent and identically dis-
tributed (i.i.d.) noise,

Ĵ ( θ )= J ( θ ) + ε, ε ∼ N ( 0, σ 2
n ) . (2)

Given the GP prior and data,

� = [θ1, θ2, . . . , θN ]� ∈ R
N×dim(θ),

y = [Ĵ ( θ1) , Ĵ ( θ2) , . . . , Ĵ ( θN ) ]� ∈ R
N ,

the posterior (predictive), cost distribution can be com-
puted for a policy parameterized by θ∗ as, Ĵ∗ ≡ Ĵ ( θ∗)∼
N ( E[Ĵ∗], s2

∗),

E[Ĵ∗] = k�f ∗( Kf + σ 2
n I)−1 y,

s2
∗ = kf ( θ∗, θ∗)−k�f ∗( Kf + σ 2

n I)−1 kf ∗,

where kf ∗ = [kf ( θ1, θ∗) , kf ( θ2, θ∗) , . . . , kf ( θN , θ∗) ]� and
Kf is the positive-definite kernel matrix, [Kf ]ij = kf ( θ i, θ j).

If prior information regarding the shape of the cost dis-
tribution is available, e.g., from simulation experiments,
the mean function and kernel hyperparameters can be
set accordingly (Lizotte et al., 2007). However, in many
cases such information is not available and model selection
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must be performed. Typically, when the hyperparameters,
�f = {σf , �f , σn}, are unknown, the log marginal likelihood,
log p( y|�,�f ), is used to optimize their values before com-
puting the posterior (Rasmussen and Williams, 2006). The
log marginal likelihood and its derivatives can be computed
in closed form, so we are free to choose from standard non-
linear optimization methods to maximize the marginal log
likelihood for model selection.

2.1.2. Expected improvement To select the ( N + 1)th
policy parameters, an offline optimization of a selection
criterion is performed with respect to the posterior cost
distribution. A commonly used criterion is EI (Moc̆kus
et al., 1978; Brochu et al., 2009). Expected improvement is
defined as the expected reduction in cost, or improvement,
over the best policy previously evaluated. The improvement
of a policy parameter θ∗ is defined as

I∗ =
{
μbest − Ĵ∗ if Ĵ∗ < μbest,

0 otherwise,
(3)

where μbest = mini=1,...,N E[Ĵ ( θ i) ]. Since the predictive
distribution under the GP model is Gaussian, the expected
value of I∗ is

EI( θ∗) =
∫ ∞

0
I∗p( I∗) dI∗,

= s∗( u∗�( u∗)+φ( u∗)) , (4)

where u∗ = (μbest − E[Ĵ∗]) /s∗, and �( ·) and φ( ·) are
the cumulative distribution function (CDF) and probability
density function (PDF) of the normal distribution, respec-
tively. If s∗ = 0, the EI is defined to be 0. Both (4)
and its gradient, ∂EI( θ ) /∂θ , are efficiently computable,
so we can apply standard nonlinear optimization methods
to maximize EI to select the next policy. In practice, a
parameter ξ is often used to adjust the balance of explo-
ration and exploitation, u∗ =(μbest −E[Ĵ∗]+ ξ ) /s∗, where
ξ > 0 leads to an optimistic estimate of improvement
and tends to encourage exploration. Setting ξ > 0 can be
interpreted as increasing the expected cost of θbest by ξ .
Lizotte et al. (2011) showed that cost scale invariance can
be achieved by multiplying ξ by the signal standard devi-
ation, σf . The Bayesian optimization with EI algorithm is
shown in Algorithm 1.

From a theoretical perspective, Vazquez and Bect (2010)
proved that using EI selection for Bayesian optimization
converges for all cost functions in the reproducing kernel
Hilbert space of the GP covariance function and almost
surely for all functions drawn from the GP prior. How-
ever, these results rest on the assumption that the GP
hyperparameters remain fixed throughout the optimization.
Recently, Bull (2011) proved convergence rates for EI
selection with fixed hyperparameters and the case where
model selection is performed according to a modified max-
imum marginal likelihood procedure. The general case of
applying Bayesian optimization with maximum marginal

Algorithm 1 Bayesian optimization with expected
improvement.
Input: Previous experience: � = [θ1, . . . , θN ], y =
[Ĵ ( θ1) , . . . , Ĵ ( θN ) ], Iterations: n

1. for i := 1 : n

(a) Perform model selection by optimizing hyperpa-
rameters:
�+f := arg max�f log p( y|�,�f )

(b) Maximize expected improvement with respect to
optimized model:
μbest := minj=1,...,|y| E[Ĵ ( θ j) ]
θ ′ := arg minθ EI( θ ,μbest)

(c) Execute θ ′, observe cost, Ĵ ( θ ′)
(d) Append � := [�, θ ′], y := [y, Ĵ ( θ ′) ]

2. Return �, y

likelihood model selection and EI policy selection is not
guaranteed to converge to the global optimum.

Although EI is a commonly used selection criterion, a
variety of other criteria have been studied. For example,
early work by Kushner (1964) considered the probability
of improvement as a criterion for selecting the next input.
CB criteria (discussed in Section 3.2) have been extensively
studied in the context of global optimization (Cox and John,
1992; Srinivas et al., 2010) and economic decision making
(Levy and Markowitz, 1979). Recent work (Osborne et al.,
2009; Garnett et al., 2010) has considered multi-step looka-
head criteria that are less myopic than methods that only
consider the next best input. For an excellent tutorial on
Bayesian optimization, see Brochu et al. (2009).

2.2. Variational heteroscedastic Gaussian
process regression

One limitation of the standard regression model (2) is the
assumption of i.i.d. noise over the input space. Many data
do not adhere to this simplification and models capable of
capturing input-dependent noise (or heteroscedasticity) are
required. The heteroscedastic regression model takes the
form

Ĵ ( θ )= J ( θ ) + εθ , εθ ∼ N ( 0, r( θ )2 ) , (5)

where the noise variance, r( θ )2, is dependent on the
input, θ . In the Bayesian non-parametric setting, a second
GP prior,

g( θ )∼ GP(μ0, kg( θ , θ ′)) ,

is placed over the unknown log variance function, g( θ )≡
log r( θ )2 (Goldberg et al., 1998; Kersting et al., 2010;
Lázaro-Gredilla and Titsias, 2011).1 This prior, when
combined with the cost prior (Section 2.1.1), forms the
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heteroscedastic Gaussian process (HGP) model. Unfortu-
nately, the HGP model has the property that the compu-
tations of the posterior distribution and the marginal log
likelihood are intractable, thus making model selection and
prediction difficult.

Stochastic techniques, such as Markov chain Monte
Carlo (MCMC) (Goldberg et al., 1998), offer a principled
way to deal with intractable probabilistic models. How-
ever, these methods tend to be computational demand-
ing. An alternative approach is to analytically define the
marginal probability in terms of a variational density, q(·).
By restricting the class of variational densities by, e.g.,
assuming q(·) is Gaussian or factored in some way, it is
often possible to define tractable bounds on the quantity
of interest. In the variational heteroscedastic Gaussian pro-
cess (VHGP) model (Lázaro-Gredilla and Titsias, 2011), a
variational lower bound on the marginal log likelihood is
used as a tractable surrogate function for optimizing the
hyperparameters.

Let

g = [g( θ1) , g( θ2) , . . . , g( θN ) ]�

be the vector of unknown log noise variances for the N data
points. By defining a normal variational density, q( g)∼
N ( μ, �), the following marginal variational bound can be
derived (Lázaro-Gredilla and Titsias, 2011),

F( μ, �) = logN ( y|0, Kf + R)−1

4
tr( �)

−KL(N ( g|μ, �) ||N ( g|μ01, Kg)) , (6)

where R is a diagonal matrix with elements [ R]ii =
e[μ]i−[�]ii/2. Intuitively, by maximizing (6) with respect to
μ and �, we maximize the log marginal likelihood under
the variational approximation while minimizing the dis-
tance (in the Kullback–Leibler sense) between the varia-
tional distribution and the distribution implied by the GP
prior. By exploiting properties of F( μ, �) at its maximum,
it is possible to write μ and � in terms of just N variational
parameters,

μ = Kg

(
�− 1

2
I

)
1+ μ01,

�−1 = K−1
g +�,

where � is a positive semidefinite diagonal matrix of vari-
ational parameters. Here F( μ, �) can be simultaneously
maximized with respect to the variational parameters and
the HGP model hyperparameters, �f and �g. If the ker-
nel functions kf ( θ , θ ′) and kg( θ , θ ′) are squared exponen-
tials (1), then �f = {σf , �f } and �g = {μ0, σg, �g}. Note
that the mean function of the cost GP prior is typically
set to zero since the data can be standardized or the max-
imum likelihood mean can be calculated and used when
performing model selection (Lizotte et al., 2011). However,
a constant hyperparameter, μ0, is included to capture the

mean log variance since setting this value to zero would
be an arbitrary choice that would generally be incorrect.
The gradients of F( μ, �) with respect to the parameters
can be computed analytically in O( N3) time (see Lázaro-
Gredilla and Titsias, 2011, supplementary material), so the
maximization problem can be solved using standard non-
linear optimization algorithms such as sequential quadratic
programming (SQP).

The VHGP model yields a non-Gaussian variational
predictive density,

q( Ĵ∗)=
∫

N ( Ĵ∗|a∗, c2
∗ + eg∗ )N ( g∗|μ∗, σ 2

∗ ) dg∗, (7)

where

a∗ = k�f ∗( Kf + R)−1 y,

c2
∗ = kf ( θ∗, θ∗)− k�f ∗( Kf + R)−1 kf ∗,

μ∗ = k�g∗

(
�− 1

2
I

)
1+ μ0,

σ 2
∗ = kg( θ∗, θ∗)−k�g∗( Kg +�−1)−1 kg∗.

Although this predictive density is intractable, its mean and
variance can be calculated in closed form:

Eq[Ĵ∗] = a∗,

Vq[Ĵ∗] = c2
∗ + exp(μ∗ + σ 2

∗ /2)≡ s2
∗.

2.2.1. Example Figure 1(a) shows the result of performing
model selection given a GP prior with a squared expo-
nential kernel and unknown constant noise variance on a
synthetic heteroscedastic data set. Figure 1(b) shows the
result of optimizing the VHGP model on the same data.
Model selection was performed using SQP to maximize
the marginal log likelihood or, in the case of the VHGP
model, the marginal variational bound (6). Owing to the
constant noise assumption, the GP model overestimates the
cost variance in regions of low variance and underestimates
in regions of high variance. In contrast, the VHGP model
captures the input-dependent noise structure.

3. Variational Bayesian optimization

There are at least two practical motivations for modify-
ing Bayesian optimization to capture policy-dependent cost
variance. The first reason is to enable metrics computed
on the predictive distribution, such as EI or probability
of improvement, to return more meaningful values for the
problem under consideration. For example, the GP model
in Figure 1 would overestimate the EI for θ = 0.6 and
underestimate the EI of θ = 0.2. The second reason is
that it creates the opportunity to employ policy selection
criteria that take cost variance into account, i.e. that are
risk-sensitive.

We extend the VHGP model to the optimization case by
deriving the expression for EI and its gradients and show
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(a) (b)

Fig. 1. Comparison of fits for the standard GP model (a) and the VHGP model (b) on a synthetic heteroscedastic data set.

that both can be efficiently approximated to several deci-
mal places using Gauss–Hermite quadrature (as is the case
for the predictive distribution itself (Lázaro-Gredilla and
Titsias, 2011)). Efficiently computable CB selection crite-
ria are also considered for selecting greedy risk-sensitive
policies. A generalization of EI, called ERI, is derived that
balances exploration and exploitation in the risk-sensitive
case. Finally, to address numerical issues that arise when N
is small (i.e. in the early stages of optimization), indepen-
dent log priors are added to the marginal variational bound
and heuristic sampling strategies are identified.

3.1. Expected improvement

Recall from Section 2.1.2 that the EI is defined as the
expected reduction in cost, or improvement, over the aver-
age cost of the best policy previously evaluated. The proba-
bility of the policy parameters, θ∗, having improvement, I∗,
under the variational predictive distribution (7) is

q( I∗)=
∫

N ( I∗|μbest − a∗, v2
∗)N ( g∗|μ∗, σ 2

∗ ) dg∗,

where v2
∗ = c2

∗ + eg∗ . The expression for EI then becomes

EI( θ∗) =
∫ ∞

0
I∗q( I∗) dI∗

=
∫ ∞

0

∫
I∗N ( I∗|μbest − a∗, v2

∗)

N ( g∗|μ∗, σ 2
∗ ) dg∗ dI∗. (8)

To get (8) into a more convenient form, we can define

u∗ = μbest − a∗
v∗

, x∗ = Ĵ∗ − a∗
v∗

,

and rewrite the expression for improvement (3) as

I∗ =
{

v∗( u∗ − x∗) if x∗ < u∗,
0 otherwise.

By using this alternative form of improvement and chang-
ing the order of integration, we have

EI( θ∗)=
∫ ∫ u∗

−∞
v∗( u∗ − x∗)φ( x∗) dx∗N ( g∗|μ∗, σ 2

∗ ) dg∗.

where φ(·) is the PDF of the normal distribution. Letting
f ( x∗)= v∗( u∗ − x∗) and integrating

∫ u∗
−∞ f ( x∗)φ( x∗) dx∗

by parts, we have
∫ u∗

−∞
f ( x∗)φ( x∗) dx∗ = [f ( x∗)�( x∗) ]u∗−∞

−
∫ u∗

−∞
(−v∗)�( x∗) dx∗,

= v∗ [x∗�( x∗)+φ( x∗) ]u∗−∞ ,

= v∗( u∗�( u∗)+φ( u∗) ) ,

where we have used the facts that limx∗→−∞ φ( x∗)= 0 and
limx∗→−∞ Cx∗�( x∗)= 0, where C is an arbitrary constant.
Thus, the expression for EI is

EI( θ∗)=
∫

v∗( u∗�( u∗)+φ( u∗) )N ( g∗|μ∗, σ 2
∗ ) dg∗. (9)

Although this expression is not analytically tractable, it can
be efficiently approximated using Gauss–Hermite quadra-
ture (Abramowitz and Stegun, 1972). This can be made
clear by setting ρ = ( g∗ − μ∗) /

√
2σ∗ and replacing all

occurrences of g∗ in the expressions for v∗ and u∗,

EI( θ∗) =
∫

e−ρ
2 v∗√

2πσ∗
( u∗�( u∗)+φ( u∗)) dρ,

≡
∫

e−ρ
2
h( ρ) dρ ≈

n∑
i=1

wih( ρi) ,

where n is the number of sample points, ρi are the roots of
the Hermite polynomial,

Hn( ρ)= (−1)n eρ
2 dne−ρ

2

dρn
, i ∈ {1, 2, . . . , n},
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and the weights are computed as

wi = 2n−1n!
√
π

n2Hn−1( ρi)2
.

In practice, a variety of tools are available for efficiently
computing both wi and ρi for a given n. In all of our
experiments, n = 45.

Similarly, the gradient ∂EI( θ ) /∂θ can be computed
under the integral (9) and the result is of the desired form:

∂EI( θ∗)
∂θ

=
∫

e−ρ
2
z( ρ) dρ,

where

z( ρ) = 1√
2πσ∗

[
1

σ∗
v∗( u∗�( u∗)+φ( u∗))

×
(
−∂σ∗
∂θ
+ 2ρ2 ∂σ∗

∂θ
+
√

2ρ
∂μ∗
∂θ

)

+∂v∗
∂θ

( u∗�( u∗)+φ( u∗))+v∗
∂u∗
∂θ
�( u∗)

]
.

As in the standard Bayesian optimization setting, one can
easily incorporate an exploration parameter, ξ , by setting
u∗ = (μbest − a∗ + ξ ) /v∗, and maximize EI using stan-
dard nonlinear optimization algorithms. Since flat regions
and multiple local maxima may be present, it is common
practice to perform random restarts during EI optimization
to avoid low-quality solutions. In our experiments, we used
the NLOPT (Johnson, 2011) implementation of SQP with
25 random restarts to optimize EI.

3.2. Confidence bound selection

In order to exploit cost variance information for policy
selection, we must consider selection criteria that flexi-
bly take cost variance into account. Although EI performs
well during learning by balancing exploration and exploita-
tion, it falls short in this regard since it always favors high
variance (or uncertainty) among solutions with equivalent
expected cost. In contrast, CB selection criteria allow one
to directly specify the sensitivity to cost variance.

The family of CB selection criteria have the general form

CB( θ∗, κ)= E[Ĵ∗]+ b( V[Ĵ∗], κ) , (10)

where b( ·, ·) is a function of the cost variance and a constant
risk factor, κ , that controls the system’s sensitivity to risk.
Such criteria have been extensively studied in the context of
statistical global optimization (Cox and John, 1992; Srini-
vas et al., 2010) and economic decision making (Levy and
Markowitz, 1979). Favorable regret bounds for sampling
with CB criteria with b( V[J∗], κ)= κ

√
V[J∗] ≡ κs∗ have

also been derived for certain types of Bayesian optimization
problems (Srinivas et al., 2010).

Interestingly, CB criteria have a strong connection to
the exponential utility functions of risk-sensitive optimal

control (Whittle, 1981, 1990). For example, consider the
risk-sensitive optimal control objective function,

γ ( θ∗, κ)= −2κ−1 log E[e−
1
2 κ Ĵ∗ ]. (11)

By taking the second-order Taylor expansion of (11) about
E[Ĵ∗], we have

γ ( θ∗, κ)≈ E[Ĵ∗]− 1

4
κV[Ĵ∗].

Thus, policies selected according to a CB criterion with
b( V[Ĵ∗], κ)= − 1

4κV[Ĵ∗] can be viewed as approxi-
mate risk-sensitive optimal control solutions. Furthermore,
because the selection is performed with respect to the
predictive distribution, policies with different risk char-
acteristics can be selected on-the-fly, without having to
perform additional policy executions. This is a distinguish-
ing property of this approach compared to other risk-
sensitive control algorithms that must perform separate
optimizations that require significant computation or addi-
tional policy executions to produce policies with different
risk-sensitivity.

In practice, one typically sets b( V[Ĵ∗], κ)= κ
√

V[Ĵ∗] =
κs∗ so that terms of the same units are combined and the
parameter κ has a straightforward interpretation. It is note-
worthy that other functions of the mean and variance can
also be used to form useful risk-sensitive criteria. For exam-
ple, the Sharpe ratio, SR = E[Ĵ∗]/s∗, is a commonly used
metric in financial analysis (Sharpe, 1966). Since the mean
and variance of the VHGP model are analytically com-
putable, extensions that optimize such criteria would be
straightforward to implement.

3.3. Expected risk improvement

The primary advantage CB criteria offer is the ability to
flexibly specify sensitivity to risk. However, CB criteria are
greedy with respect to risk-sensitive objectives and there-
fore do not have the same exploratory quality as EI does
for expected cost minimization. It is therefore natural to
consider whether the EI criterion could be extended to per-
form risk-sensitive policy selection in a way that balances
exploration and exploitation.

Schonlau et al. (1998) considered a generalization of EI
where the improvement for θ∗ was defined as

Iρ∗ = max{0, (μbest − Ĵ∗)ρ },

where ρ is an integer-valued parameter that affects the rel-
ative importance of large, low-probability improvements
and small, high-probability improvements. Interestingly, the
authors showed that for ρ = 2, EI( θ∗, ρ)= E[Ĵ∗]2+V[Ĵ∗],
which can be interpreted as a risk-seeking policy selec-
tion strategy. However, to perform balanced exploration
in systems with more general risk-sensitivity, a different
generalization of EI is needed.
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To address this problem, we propose an ERI criterion. In
this case, the risk improvement for the policy parameters θ∗
is defined as

Iκ∗ =
{
μbest + κsbest−Ĵ∗ − κs∗ if Ĵ∗ + κs∗ < μbest + κsbest,

0 otherwise,

where
i = arg minj=1,...,N E[Ĵ ( θ j) ]+ κs( θ j) ,

μbest = E[Ĵ ( θ i) ],

sbest = s( θ i) .

Intuitively, the risk improvement captures the reduction in
the value of the risk-sensitive objective, E[Ĵ ] + κs, over
the best policy previously evaluated. Following a simi-
lar derivation as for EI, the ERI under the variational
distribution is

ERI( θ∗) =
∫ ∞

0
Iκ∗ q( Iκ∗ ) dIκ∗

=
∫

v∗( u∗�( u∗)+φ( u∗))N ( g∗|μ∗, σ 2
∗ ) dg∗,

(12)

where u∗ = (μbest − a∗ + κ( sbest − s∗)) /v∗. Thus, ERI can
be viewed as a straightforward generalization of EI, where
ERI = EI if κ = 0.

3.4. Coping with small sample sizes

3.4.1. Log hyperpriors Numerical precision problems are
commonly experienced when performing model selection
(which requires kernel matrix inversions and determinant
calculations) using small amounts of data. To help improve
numerical stability in the VHGP model when N is small,
we augment F( μ, �) with independent log-normal priors
for each hyperparameter,

F̂( μ, �)= F( μ, �)+
∑
ψk∈�

logN ( logψk|μk , σ
2
k ) , (13)

where � = �f ∪ �g is the set of all hyperparameters.
Lizotte et al. (2011) showed that empirical performance
can be improved in the standard Bayesian optimization
setting by incorporating log-normal hyperpriors into the
model selection procedure. In practice, these priors can be
quite vague and thus do not require significant experimenter
insight. For example, in our experiments with variational
Bayesian optimization (VBO), we set the log prior on length
scales so that the width of the 95% confidence region is at
least 20 times the actual policy parameter ranges.

As is the case with standard marginal likelihood maxi-
mization, F̂( μ, �) may have several local optima. In prac-
tice, performing random restarts helps avoid low-quality
solutions (especially when N is small). In our experiments,
SQP was used with 10 random restarts to perform model
selection.

3.4.2. Sampling It is well known that selecting policies
based on distributions fit using very little data can lead to
myopic sampling and premature convergence (Jones, 2001).
For example, if one were unlucky enough to sample only
the peaks of a periodic cost function, there would be good
reason to infer that all policies have approximately equiva-
lent cost. Incorporating external randomization is one way
to help alleviate this problem. For example, it is common
to obtain a random sample of N0 initial policies prior to
performing optimization. Sampling according to EI with
probability 1− ε and randomly otherwise can also perform
well empirically. In the standard Bayesian optimization set-
ting with model selection, ε-random EI selection has been
shown to yield near-optimal global convergence rates (Bull,
2011).

Randomized CB selection with, e.g., κ ∼ N ( 0, 1) can
also be applied when the policy search is aimed at identify-
ing a spectrum of policies with different risk-sensitivities.
However, since this technique relies completely on the esti-
mated cost distribution, it is most appropriate to apply after
a reasonable initial estimate of the cost distribution has been
obtained.

The VBO algorithm is shown in Algorithm 2.

Algorithm 2 Variational Bayesian optimization.
Input: Previous experience: � = [θ1, . . . , θN ], y =
[Ĵ ( θ1) , . . . , Ĵ ( θN ) ], Risk factor: κ , Iterations: n

1. for i := 1 : n

(a) Perform model selection by optimizing hyperpa-
rameters and variational parameters using, e.g.,
SQP with random restarts:
�+f , �+g , �+ := arg max F̂( μ, �)

(b) Maximize policy selection criterion with respect to
optimized model:

• Confidence bound:

θ ′ := arg minθ Eq[Ĵ ( θ ) ]+ κ
√

Vq[Ĵ ( θ ) ]
• Expected improvement:

μbest := minj=1,...,|y| Eq[Ĵ ( θ j) ]
θ ′ := arg minθ EI( θ ,μbest)

• Expected risk improvement:
b := arg minj=1,...,|y| Eq[Ĵ ( θ j) ]

+ κ
√

Vq[Ĵ ( θ j) ]

μbest := Eq[Ĵ ( θb) ]

sbest :=
√

Vq[Ĵ ( θb) ]

θ ′ := arg minθ ERI( θ , κ ,μbest, sbest)

(c) Execute θ ′, observe cost, Ĵ ( θ ′)
(d) Append � := [�, θ ′], y := [y, Ĵ ( θ ′) ]

2. Return �, y
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4. Local search

Like most standard Bayesian optimization implementa-
tions, no general global convergence guarantees exist for
VBO. In addition, performing global selection of pol-
icy parameters can produce large jumps in policy space
between trials, which can be undesirable in some physi-
cal systems. A straightforward way to address this latter
concern is to restrict the parameter range to the local neigh-
borhood of the nominal policy parameters. However, adding
constraints in this way does not improve the convergence
properties of the algorithm.

Gradient-based policy search methods make small, incre-
mental changes to the policy parameters and typically
have demonstrable local convergence properties under mild
assumptions (Bertsekas and Tsitsiklis, 2000). Thus, in addi-
tion to using the learned cost model to perform global
policy selection, we consider its use as a local critic for per-
forming risk-sensitive gradient descent. It is straightforward
to show that, under certain assumptions, the generalized
RSSGD update follows the direction of the gradient of a
CB objective. In addition, when a minimum variance base-
line is used, the algorithm can be viewed as taking local
steps in the direction of the risk improvement (Section 3.3)
over the current policy parameters. This creates the oppor-
tunity to flexibly interweave risk-sensitive gradient descent
and local VBO to, e.g., select local greedy policies or to
change risk-sensitivity on-the-fly.

4.1. RSSGD

Stochastic gradient descent methods have had significant
practical applicability to solving robot control problems in
the expected cost setting (Kohl and Stone, 2004; Tedrake
et al., 2004; Roberts and Tedrake, 2009), so we focus
on extending this approach to the risk-sensitive case. The
stochastic gradient descent algorithm, also called the weight
perturbation algorithm (Jabri and Flower, 1992), is a sim-
ple method for descending the gradient of a noisy objective
function. The algorithm proceeds as follows. Starting with
parameters, θ , execute the policy, πθ , and observe the cost,
Ĵ ( θ )≡ Ĵ θ . Next, randomly sample a parameter perturba-
tion, z ∼ N ( 0, σ 2I), execute the perturbed policy, πθ+z,
and observe the cost, Ĵ ( θ + z)≡ Ĵ θ+z. Finally, update the
policy parameters, θ ← θ +�θ , where

�θ = −η( Ĵ θ+z − Ĵ θ ) z,

and η is a step size parameter. Intuitively, this rule updates
the parameters in the direction of z if Ĵ θ+z < Ĵ θ , and in
the direction of −z if Ĵ θ+z > Ĵ θ . It can be shown that, in
expectation, this update follows the true (scaled) gradient
of the expected cost,

E[�θ] = −ησ 2∇E[Ĵ θ ],

where ∇fθ ≡ ∂f
∂θ

∣∣∣
θ
.

In contrast, consider the RSSGD update

�θ = −η( Ĵ θ+z + κ r̃θ+z − b( θ )) z, (14)

where r̃θ+z is an estimate of the cost standard deviation of
πθ+z and b( θ ) is an arbitrary baseline function (Williams,
1992) of the policy parameters.

Substituting (5) into (14) and taking the first-order Taylor
expansion at θ + z, we have

�θ = −η( Jθ+z + εθ+z + κ r̃θ+z − b( θ )) z,

≈ −η( Jθ + z�∇Jθ + εθ + uz�∇rθ

+ κ r̃θ + κz�∇ r̃θ − b( θ )) z,

≡ �̃θ ,

where u ∼ N ( 0, 1). In expectation, this becomes

E[�̃θ ] = −ησ 2 (∇Jθ + κ∇ r̃θ ) , (15)

where the expectation is taken with respect to z, u, and εθ .
Thus, the update equation (14) is an estimator of the gra-
dient of expected cost that is biased in the direction of the
estimated gradient of the standard deviation (to a degree
specified by the risk factor κ). If the estimator of the cost
standard deviation is unbiased, we have

E[�̃θ ] = −ησ 2∇CB( θ , κ) , (16)

a scaled unbiased estimate of the gradient of the CB objec-
tive, CB( θ , κ)= Jθ + κrθ . Using a non-parametric model,
such as VHGP, as a local critic will not, in general, lead
to unbiased estimates of the mean and variance of the cost.
However, by introducing bias these methods can potentially
produce useful approximations of the local cost distribution
after only a small number of policy evaluations.

4.1.1. Natural gradient From (16) it is clear that the unbi-
asedness of the update is also dependent on the isotropy
of the sampling distribution, z ∼ N ( 0, σ 2I). However, as
was shown by Roberts and Tedrake (2009), learning per-
formance can be improved in some cases by optimizing
the sampling distribution variance independently for each
policy parameter, z ∼ N ( 0, �). In this case, the expected
update becomes biased,

E[�̃θ ] = −η�∇CB( θ , κ) , (17)

but it is still in the direction of the natural gradient (Amari,
1998). To see this, recall that for probabilistically sampled
policies, the natural gradient is defined as F−1∇f ( θ ), where
F−1 is the inverse Fisher information matrix (Kakade,
2002). When the policy sampling distribution is mean-zero
Gaussian with covariance �, the inverse Fisher information
matrix is F−1 = �. Thus, (17) is in the direction of the
natural gradient.
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4.1.2. Baseline selection The expected update (15) is
unaffected by the choice of the baseline function, b( θ ),
given that it depends only on θ . However, the choice of
baseline does affect the variance of the update. The variance
of the update (14) can be written as

V[�̃θ ] = η2σ 2( b( θ )2 I− 2Jθb( θ ) I− 2κ r̃θb( θ ) I

+J2
θ I+ 2κJθ r̃θ I+ κ2r̃2

θ I+ r4
θ I

+σ 2(∇J�θ ∇Jθ I+∇Jθ∇J�θ )

+σ 2κ( 2∇J�θ ∇ r̃θ I+ ∇Jθ∇ r̃�θ +∇ r̃θ∇J�θ )

+σ 2r2
θ (∇r�θ ∇rθ I+ 2∇rθ∇r�θ )

+σ 2κ2(∇ r̃�θ ∇ r̃θ I+ ∇ r̃θ∇ r̃�θ )) . (18)

It is straightforward to show that the baseline that min-
imizes (18) is b( θ )= Jθ + κ r̃θ . However, since Jθ is
unknown, we define the baseline using an estimate of the
expected cost, J̃θ . The resulting increase in variance over
the optimal baseline is proportional to the squared error of
the expected cost estimate: η2σ 2( Jθ − J̃θ )2. The RSSGD
update then becomes

�θ = −η( Ĵ θ+z − J̃θ + κ( r̃θ+z − r̃θ )) z. (19)

Intuitively, Equation (19) reduces to the classical stochas-
tic gradient descent update when either the system has a
neutral attitude toward risk (κ = 0) or when the esti-
mate of the cost standard deviation is locally constant:
∇ r̃θ = 0 ⇒ r̃θ+z − r̃θ = 0, for small z such that the lin-
earization holds. Note the relationship between the RSSGD
update and the ERI criterion (12). From this point of view,
the update can be interpreted as taking steps in the direc-
tion of risk improvement over the nominal policy parameter
setting.

In implementation, it can be helpful to divide the step size
by r̃θ so the update maintains scale invariance to changing
noise magnitude (see Algorithm 3). In this way, samples are
weighted by the local cost variance estimate so, e.g., large
differences in cost in high-variance regions do not cause
large fluctuations in the policy parameter values. On the
other hand, large fluctuations in the cost variance estimate
could produce undesirably large or small step sizes. We
therefore also constrain the scaled step size to stay in some
reasonable range, e.g., η/r̃θ ∈ [0.01, 0.9]. Although this
approach is heuristic, it does have practical advantages such
as weighting updates according to their perceived reliability.

As in VBO, the critic is updated after each policy evalu-
ation by recomputing the predictive cost distribution. How-
ever, in this case model selection and prediction are per-
formed using only observations near the current parameter-
ization, θ . A nearest-neighbor selection can be performed
efficiently around the current policy parameters by storing
observations in a kd-tree data structure and using, e.g., a k-
nearest neighbors or an ε-ball criterion. However, because
the number of samples is typically small in the types of
robot control tasks under consideration, the actual computa-
tional effort required to find nearest neighbors and perform

Algorithm 3 Risk-sensitive stochastic gradient descent.
Input: Parameters: η, σ , ε, Risk factor: κ , Initial policy: θ

1. Initialize � = [ ], y = [ ],
2. while not converged:

(a) Sample perturbation: z ∼ N ( 0, σ 2I)
(b) Execute θ + z, record cost Ĵ θ+z

(c) Update data:
�, y = [�, θ + z], [y, Ĵ θ+z]
�loc, yloc = NearestNeighbors( �, y, θ , ε)

(d) Compute posterior mean and variance:
J̃θ = E[Ĵ θ | �loc, yloc]
r̃2
θ = V[Ĵ θ | �loc, yloc]

r̃2
θ+z = V[Ĵ θ+z | �loc, yloc]

(e) Update policy parameters:

�θ := − η

r̃θ

(
Ĵ θ+z − J̃θ + κ( r̃θ+z − r̃θ )

)
z

θ := θ +�θ

3. Return �, y, θ

model selection is quite modest. Thus, the primary advan-
tage of constructing a local, rather than a global, model is
that cost distributions that are non-stationary with respect to
their optimal hyperparameter values can be handled more
easily. The RSSGD algorithm is outlined in Algorithm 3.

5. Experiments

In Sections 5.1 and 5.2 we illustrate the VBO algorithm
using simple synthetic domains. In Section 5.3, we apply
VBO to a impact recovery task with the uBot-5 mobile
manipulator. Finally, in Section 5.4, we apply the RSSGD
algorithm in a dynamic heavy lifting task with the uBot-5.

5.1. Synthetic data

As an illustrative example, in Figure 2 we compare the per-
formance of VBO to standard Bayesian optimization in a
simple one-dimensional noisy optimization task. For this
task, the true underlying cost distribution (Figure 2(a)) has
two global minima (in the expected cost sense) with dif-
ferent cost variances. Both algorithms begin with the same
N0 = 10 random samples and perform 10 iterations of EI
selection (ξ = 1.0, ε = 0.25). In Figure 2(b), we see that
Bayesian optimization succeeds in identifying the regions
of low cost, but it cannot capture the policy-dependent
variance characteristics.

In contrast, VBO reliably identifies the minima and
approximates the local variance characteristics. Figure 2(d)
shows the result of applying two different CB selection cri-
teria to vary risk-sensitivity. In this case, −CB( θ∗, κ) was
maximized, where

CB( θ∗, κ)= Eq[Ĵ∗]+ κs∗. (20)
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Fig. 2. (a) An example unknown noise distribution with two equivalent expected cost minima with different cost variance. (b) The
distribution learned after 10 iterations of Bayesian optimization with EI selection and (c) after 10 iterations of VBO with EI selection
(using the same initial N0 = 10 random samples for both cases). Bayesian optimization succeeded in identifying the minima, but it
cannot distinguish between high- and low-variance solutions. (d) CB selection criteria are applied to select risk-seeking and risk-averse
policy parameters (indicated by the vertical dotted lines) given the distribution learned using VBO.

Risk factors κ = −1.5 and κ = 1.5 were used to
select a risk-seeking and risk-averse policy parameters,
respectively.

5.2. Noisy pendulum

As another simple example, we considered a swing-up task
for a noisy pendulum system. In this task, the maximum
torque output of the pendulum actuator is unknown and is
drawn from a normal distribution at the beginning of each
episode. As a rough physical analogy, this might be under-
stood as fluctuations in motor performance that are caused
by unmeasured changes in temperature. The policy space
consisted of “bang–bang” policies in which the maximum
torque is applied in the positive or negative direction, with
switching times specified by two parameters, 0 ≤ t1, t2 ≤
1.5 s. Thus, θ = [t1, t2]. The cost function was defined as

J ( θ )=
∫ T

0
0.01α( t) + 0.0001u( t)2 dt, (21)

where 0 ≤ α( t)≤ π is the pendulum angle measured from
upright vertical, T = 3.5 s, and u( t)= τmax if 0 ≤ t ≤ θ1,
u( t)= −τmax if θ1 < t ≤ θ1 + θ2, and u( t)= τmax if
θ1+θ2 < t ≤ T . The system always started in the downward
vertical position with zero initial velocity and the episode
terminated if the pendulum came within 0.1 rad of the
upright vertical position. The parameters of the system were
l = 1.0 m, m = 1.0 kg, and τmax ∼ N ( 4, 0.32) Nm. With
these physical parameters, the pendulum must (with proba-
bility ≈ 1.0) perform at least two swings to reach vertical
in less than T seconds.

The cost function (21) suggests that policies that reach
vertical as quickly as possible (i.e. using the fewest swings)
are preferred. However, the success of an aggressive policy
depends on the torque generating capability of the pen-
dulum. With a noisy actuator, it is reasonable to expect
aggressive policies to have higher variance. An approxi-
mation of the cost distribution obtained via discretization
(N = 40,000) is shown in Figure 3(a). It is clear from this
figure that regions around policies that attempt two-swing

solutions (θ = [0.0, 1.0], θ = [1.0, 1.5]) have low expected
cost, but high cost variance.

Figure 3(b) shows the results of 25 iterations of VBO
using EI selection (N0 = 15, ξ = 1.0, ε = 0.2) in the
noisy pendulum task. After N = 40 total evaluations, the
expected cost and cost variance are sensibly represented
in regions of low cost. Figure 4 illustrates the behavior of
two policies selected by minimizing the CB criterion (20)
on the learned distribution with κ = ±2.0. The risk-
seeking policy (θ = [1.03, 1.5]) makes a large initial swing,
attempting to reach the vertical position in two swings.
In doing so, it only succeeds in reaching the goal con-
figuration when the unobserved maximum actuator torque
is large (roughly E[τmax] + σ [τmax]). The risk-averse pol-
icy (θ = [0.63, 1.14]) always produces three swings and
exhibits low cost variance, although it has higher cost than
the risk-seeking policy when the maximum torque is large
(15.93 versus 13.03).

It is often easy to understand the utility of risk-averse
and risk-neutral policies, but the motivation for selecting
risk-seeking policies might be less clear. The above result
suggests one possibility: the acquisition of specialized,
high-performance policies. For example, in some cases
risk-seeking policies could be chosen in an attempt to iden-
tify observable initial conditions that lead to rare low-cost
events. Subsequent optimizations might then be performed
to direct the system to these initial conditions. One could
also imagine situations when the context demands perfor-
mance that lower risk policies are very unlikely to generate.
For example, if the minimum time to goal was reduced so
that only two swing policies had a reasonable chance of
succeeding. In such instances it may be desirable to select
higher-risk policies, even if the probability of succeeding is
quite low.

5.3. Balance recovery with the uBot-5

The uBot-5 (Figure 5) is an 11-degree-of-freedom (11-
DoF) mobile manipulator developed at the University of
Massachusetts Amherst (Kuindersma et al., 2009; Deegan,
2010). The uBot-5 has two 4-DoF arms, a rotating trunk,
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(a) (b)

Fig. 3. (a) The cost distribution for the simulated noisy pendulum system obtained by a 20×20 discretization of the policy space. Each
policy was evaluated 100 times to estimate the mean and variance (N = 40,000). (b) Estimated cost distribution after 25 iterations of
VBO with 15 initial random samples (N = 40). Owing to the sample bias that results from EI selection, the optimization algorithm
tends to focus modeling effort in regions of low cost.

(a) τmax = 3.4 (b) τmax = 3.7 (c) τmax = 4.0 (d) τmax = 4.3 (e) τmax = 4.6

(f) τmax = 4.2 (g) τmax = 4.3 (h) τmax = 4.4 (i) τmax = 4.5 (j) τmax = 4.6

Fig. 4. Performance of risk-averse (a)–(e) and risk-seeking (f)–(j) policies as the maximum pendulum torque is varied. Shown are
phase plots with the goal regions shaded in green. The risk-averse policy always used three swings and consistently reached the vertical
position before the end of the episode. The risk-seeking policy used longer swing durations, attempting to reach the vertical position in
only two swings. However, this strategy only pays off when the unobserved maximum actuator torque is large.

and two wheels in a differential drive configuration. The
robot stands approximately 60 cm from the ground and has
a total mass of 19 kg. The robot’s torso is roughly similar to
an adult human in terms of geometry and scale, but instead
of legs, it has two wheels attached at the hip. The robot bal-
ances using a linear-quadratic regulator (LQR) with feed-
back from an onboard inertial measurement unit (IMU) to
stabilize around the vertical fixed point. The LQR controller
has proved to be very robust throughout 5 years of frequent
usage and it remains fixed in our experiments.

In our previous experiments (Kuindersma et al., 2011),
the energetic and stabilizing effects of rapid arm motions on
the LQR stabilized system were evaluated in the context of
recovery from impact perturbations. One observation made
was that high-energy impacts caused a subset of possible
recovery policies to have high cost variance: successfully

stabilizing in some trials, while failing to stabilize in oth-
ers. We extended these experiments by considering larger
impact perturbations, increasing the set of arm initial condi-
tions, and defining a policy space that permits more flexible,
asymmetric arm motions (Kuindersma et al., 2012b).

The robot was placed in a balancing configuration with
its upper torso aligned with a 3.3 kg mass suspended from
the ceiling (Figure 6). The mass was pulled away from the
robot to a fixed angle and released, producing a controlled
impact between the swinging mass and the robot. The pen-
dulum momentum prior to impact was 9.9 ± 0.8 Ns and
the resulting impact force was approximately equal to the
robot’s total mass in Earth’s gravity. The robot was consis-
tently unable to recover from this perturbation using only
the wheel LQR (see the rightmost column of Figure 7). The
robot was attached to the ceiling with a loose-fitting safety
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Fig. 5. The uBot-5 demonstrating a whole-body pushing
behavior.

10 Ns

19 kg

60 cm

Fig. 6. The uBot-5 situated in the impact pendulum apparatus.

rig designed to prevent the robot from falling completely to
the ground, while not affecting policy performance.

This problem is well suited for model-free policy opti-
mization since there are several physical properties, such
as joint friction, wheel backlash, and tire slippage, that
make the system difficult to model accurately. In addition,
although the underlying state and action spaces are high-
dimensional (22 and 8, respectively), low-dimensional pol-
icy spaces that contain high-quality solutions are relatively
straightforward to identify.

The parameterized policy controlled each arm joint
according to an exponential trajectory, τi( t)= e−λit, where
0 ≤ τi( t)≤ 1 is the commanded DC motor power for

Fig. 7. Data collected over 10 trials using policies identified as
risk-averse, risk-neutral, and risk-seeking after performing VBO.
The policies were selected using CB criteria with κ = 2, κ = 0,
κ = −1.5, and κ = −2, from left to right. The sample means
and two times sample standard deviations are shown. The shaded
region contains all trials that resulted in failure to stabilize. Ten
trials with a fixed-arm policy are plotted on the far right to serve
as a baseline level of performance for this impact magnitude.

joint i at time t. The λ parameters were paired for the
shoulder/elbow pitch and the shoulder roll/yaw joints. This
pairing allowed the magnitude of dorsal and lateral arm
motions to be independently specified. The pitch (dorsal)
motions were specified separately for each arm and the lat-
eral motions were mirrored, which reduced the number of
policy parameters to three. The range of each λi was con-
strained: 1 ≤ λi ≤ 15. At time t, if ∀i τi( t)< 0.25, the arms
were retracted to a nominal configuration (the mean of the
initial configurations) using a fixed, low-gain linear position
controller.

The cost function was designed to encourage energy-
efficient solutions that successfully stabilized the system:

J ( θ )= h( x( T))+
∫ T

0

1

10
I( t) V ( t) dt,

where I( t) and V ( t) are the total absolute motor current and
voltage at time t, respectively, T = 3.5 s, and h( x( T))= 5
if x( T)∈ FailureStates, otherwise h( x( T))= 0. After 15
random initial trials, we applied VBO with EI selection
(ξ = 1.0, ε = 0.2) for 15 episodes and randomized CB
selection (κ ∼ N ( 0, 1)) for 15 episodes resulting in a total
of N = 45 policy evaluations (approximately 2.5 minutes of
total experience). Since the left and right pitch parameters
are symmetric with respect to cost, we imposed an arbitrary
ordering constraint, λleft ≥ λright, during policy selection.

After training, we evaluated four policies with differ-
ent risk-sensitivities selected by minimizing the CB crite-
rion (20) with κ = 2, κ = 0, κ = −1.5, and κ = −2.
Each selected policy was evaluated 10 times and the results
are shown in Figure 7. The sample statistics confirm the
algorithmic predictions about the relative riskiness of each
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(a) Low-risk policy, κ = 2.0

(b) High-risk policy, κ = −2.0

Fig. 8. Time series (time between frames is 0.24 seconds) showing (a) a trial executing the low-risk policy and (b) two trials executing
the high-risk policy. Both policies were selected using CB criteria on the learned cost distribution. The low-risk policy produced
an asymmetric dorsally directed arm motion with reliable recovery performance. The high-risk policy produced an upward laterally
directed arm motion that failed approximately 50% of the time.

policy. In this case, the risk-averse and risk-neutral poli-
cies were very similar (no statistically significant difference
between the mean or variance), while the two risk-seeking
policies had higher variance (for κ = −2, the differences
in both the sample mean and variance were statistically
significant).

For κ = −2, the selected policy produced an upward
laterally directed arm motion that failed approximately 50%
of the time. In this case, the standard deviation of cost was
sufficiently large that the second term in CB objective (20)
dominated, producing a policy with high variance and poor
average performance. A slightly less risk-seeking selection
(κ = −1.5) yielded a policy with conservative low-energy
arm movements that was more sensitive to initial conditions
than the lower risk policies. This exertion of minimal effort
could be viewed as a kind of gamble on initial conditions.
Figure 8 shows example runs of the risk-averse and risk-
seeking policies.

5.4. Dynamic heavy lifting

We evaluated the RSSGD algorithm in the dynamic control
task of lifting a 1 kg, partially filled laundry detergent bot-
tle from the ground to a height of 120 cm using the uBot-5
(Kuindersma et al., 2012a). This problem is challenging for
several reasons. First, the bottle is heavy, so most arm tra-
jectories from the starting configuration to the goal will not
succeed because of the limited torque generating capabili-
ties of the arm motors. Second, the upper body motions act
as disturbances to the LQR. Thus, violent lifting trajectories
will cause the robot to destabilize and fall. Finally, the bot-
tle itself has significant dynamics because the heavy liquid

sloshes as the bottle moves. Since the robot had only a sim-
ple claw gripper and we made no modifications to the bottle,
the bottle moved freely in the hand, which had a significant
effect on the stabilized system.

The policy was represented as a cubic spline trajectory
in the right arm joint space with seven open parameters
to be optimized by the algorithm. The parameters included
four shoulder and elbow waypoint positions and three time
parameters. The start and end configurations were fixed.
Joint velocities at the waypoints were computed using the
tangent method (Craig, 2005). The initial policy was a
hand-crafted smooth and short duration motion to the goal
configuration. Our ability to provide a good initial guess
for the policy parameters makes local search with RSSGD
more attractive. However, with the bottle in hand, this policy
succeeded only a small fraction of the time, with most trials
resulting in a failure to lift the bottle above the shoulder.

The cost function was defined as

J ( θ )=
∫ T

0
( x( t)�Qx( t)+cI( t) V ( t)) dt, (22)

where x = [xwheel, ẋwheel,αbody, α̇body, herror]�, I( t) and V ( t)
are total motor current and voltage for all motors at time t,
Q = diag( [0.001, 0.001, 0.5, 0.5, 0.05]), and c = 0.01.
The components of the state vector are the wheel position
and velocity, body angle and angular velocity, and verti-
cal error between the desired and actual bottle position,
respectively. Intuitively, this cost function encourages fast
and energy efficient solutions that do not violently perturb
the LQR. In each trial, the sampling rate was 100 Hz and
T = 6 s. A trial ended when either t > T or the robot
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Fig. 9. Data collected from 10 test trials executing the initial
lifting policy and the policy after 15 and 30 episodes of learning.

reached the goal configuration with maintained low transla-
tional velocity (≤ 5 cm/s). The algorithm parameter values
in all experiments were η = 0.5, σ = 0.075, ε = 3.5σ , and
η/r̃θ ∈ [0.01, 0.5]. Each policy parameter range was scaled
to be θi ∈ [0, 1], so the constant σ corresponded to different
(unscaled) perturbation sizes for each dimension depending
on the total parameter range.

5.4.1. Risk-neutral learning In the first experiment, we ran
RSSGD with κ = 0 to perform a risk-neutral gradient
descent. The VHGP model was used to locally construct
the critic and model selection was performed using SQP. A
total of 30 trials (less than 2.5 minutes of total experience)
were performed and a reliable, low-cost policy was learned.
The robot failed to recover balance in 3 of the 30 trials. In
these cases, the emergency stop was activated and the robot
was manually reset. Figure 9 illustrates the reduction in cost
via empirical measurements taken at fixed intervals during
learning.

Interestingly, the learned policy exploits the dynamics
of the liquid in the bottle by timing the motion such that
the shifting bottle contents coordinate with the LQR con-
troller to correct the angular displacement of the body. This
dynamic interaction would be very difficult to capture in a
system model. Incidentally, this serves as a good example
of the value of policy search techniques: by virtue of ignor-
ing the dynamics, they are in some sense insensitive to the
complexity of the dynamics (Roberts and Tedrake, 2009).
Figure 10(a) shows an example run of the learned policy.

5.4.2. Variable risk control In the process of learning a
low average-cost policy, a model of the local cost dis-
tribution was repeatedly computed. The next experiments
examined the effect of performing offline policy selection
using the estimate of the local cost distribution around
the learned policy. In particular, we considered two hypo-
thetical changes in operating context: when the robot’s
workspace is reduced, requiring that the policy have a small

footprint with high certainty, and when the battery charge
is very low, requiring that the policy uses very little energy
with high certainty. Offline CB policy selection and subse-
quent risk-averse gradient descent was performed for each
case and the resulting policies were compared empirically.

Context changes were represented by a reweight-
ing of cost function terms. For example, to capture
the low-battery-charge context, the relative weight of
the motor power term in (22) was increased: Qen =
diag( [0.0005, 0.0005, 0.25, 0.25, 0.05]) and cen = 0.1. The
cost of previous trajectories was then computed using the
transformed cost function,

Jen( θ )=
∫ T

0
( x( t)�Qenx( t) + cenI( t) V ( t) ) dt. (23)

The VHGP model was used to approximate the transformed
cost distribution, Ĵ en( θ ), around the previously learned pol-
icy parameters using the data collected during the 30 learn-
ing trials. SQP was used to minimize J̃en( θ )+ κ r̃en( θ )
offline. Likewise, to represent the translation-averse case,
the relative weight assigned to wheel translation was
increased, Qtr = diag( [0.002, 0.001, 0.5, 0.5, 0.05]) and
ctr = 0.001, and the resulting transformed local model was
used to minimize J̃tr( θ )+ κ r̃tr( θ ) offline.

Both risk-neutral ( κ = 0) and risk-averse ( κ = 2) offline
policy selections were performed for each case. In addition,
five episodes of risk-averse ( κ = 2) gradient descent were
performed starting from the offline selected risk-averse pol-
icy. Each policy was executed five times and the results
were compared empirically. Figure 11(a) shows the results
from the translation aversion experiments. The risk-neutral
offline policy had significantly lower average (transformed)
cost and lower variance than the original learned policy. The
risk-averse offline policy also has significantly lower aver-
age cost than the prior learned policy, but its average cost
was slightly (not statistically significantly) higher than the
offline risk-neutral policy. However, the offline risk-averse
policy had significantly lower variance than the risk-neutral
offline policy. An example run of the offline risk-averse pol-
icy is shown in Figure 10(b). Finally, the policy learned
after five episodes of risk-averse gradient descent starting
from the offline selected policy led to another significant
reduction in expected cost while maintaining similarly low
variance.

For the energy-averse case, the offline risk-neutral policy
had no statistically significant difference in sample aver-
age or variance compared with the prior learned policy.
The risk-averse policy had slightly (not statistically signif-
icantly) higher average cost than both the original learned
policy and the offline risk-neutral policy, but it had signifi-
cantly lower variance. The policy learned after five episodes
of risk-averse gradient descent had significantly lower aver-
age cost than the offline risk-averse while maintaining sim-
ilar variance (see Figure 11(b)). The statistical significance
results given in Figure 11 are strongly in line with our quali-
tative assessment of the data. However, we should take care
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(a)

(b)

Fig. 10. (a) The learned risk-neutral policy exploits the dynamics of the container to reliably perform the lifting task. (b) With no
additional learning trials, a risk-averse policy is selected offline that reliably reduces translation. The total time duration of each of the
above sequences is approximately 3 seconds.

(a) (b)

Fig. 11. Data from test runs of the prior learned policy, the offline selected risk-neutral and risk-averse policies, and the policy after five
episodes of risk-averse gradient descent starting from the risk-averse offline policy: (a) translation aversion; (b) energy aversion. A star
at the top of a column signifies a statistically significant reduction in the mean compared with the previous column (Behrens–Fisher,
p < 0.01) and a triangle signifies a significant reduction in the variance (F-test, p < 0.03).

to consider these in light of the small sample sizes avail-
able, which constrain our ability to verify their underlying
assumptions.

6. Related work

Several successful applications of Bayesian optimization
to robot control tasks exist in the literature. Lizotte et al.
(2007) applied Bayesian optimization to discover an Aibo

gait that surpassed the state-of-the-art in a comparatively
small number of trials. Tesch et al. (2011) used Bayesian
optimization to optimize snake robot gaits in several envi-
ronmental contexts. Martinez-Cantin et al. (2009) describe
an application to online sensing and path planning for
mobile robots in uncertain environments. Recently, Kor-
mushev and Caldwell (2012) proposed a particle filter
approach for performing direct policy search that is closely
related to Bayesian optimization techniques.
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A variety of algorithms have been designed to find opti-
mal policies with respect to risk-sensitive criteria. Early
work in risk-sensitive control was aimed at extending
dynamic programming methods to optimize exponential
objective functions. This work included algorithms for solv-
ing discrete Markov decision processes (MDPs) (Howard
and Matheson, 1972) and linear-quadratic-Gaussian prob-
lems (Jacobson, 1973; Whittle, 1981). Borkar derived a
variant of the Q-learning algorithm for finite MDPs with
exponential utility (Borkar, 2002). Heger (1994) derived a
worst-case Q-learning algorithm based on a minimax crite-
rion. For continuous problems, van den Broek et al. (2010)
generalized path integral methods from stochastic optimal
control to the risk-sensitive case.

Other work has approached the problem of risk-sensitive
control with methods other than exponential objective
functions. For example, several authors have developed
algorithms in discrete model-free RL setting for learn-
ing conditional return distributions (Dearden et al., 1998;
Morimura et al., 2010a,b), which can be combined with pol-
icy selection criteria that take return variance into account.
The algorithms discussed in this paper are related to this
line of work, but they are more directly applicable to sys-
tems with continuous state and action spaces. The recent
work of Tamar et al. (2012) describes likelihood-ratio pol-
icy gradient algorithms appropriate for different types of
risk-sensitive criteria. The simulation-based algorithm in
their work is closely related to the RSSGD update rule.
However, rather than learning a non-parametric cost model,
their algorithm uses a two-timescale approach to obtain
incremental unbiased estimates of the cost mean and vari-
ance. In some cases, this unbiasedness might be more
important than the sample efficiency that cost-model-based
approaches can offer.

Policy gradient approaches that are designed to learn
dynamic transition models, such as PILCO (Deisenroth
and Rasmussen, 2011), can also be used to capture uncer-
tainty in the cost distribution (Deisenroth, 2010). These
approaches are capable of handling high-dimensional pol-
icy spaces, whereas the approaches described in this work
are only appropriate for low-dimensional policy spaces.
However, to achieve this scalability, certain smoothness
assumptions must be made about the system dynamics. Fur-
thermore, performing offline optimizations to change risk-
sensitivity would be significantly more computationally
intensive than the approach presented here.

Mihatsch and Neuneier (2002) developed risk-sensitive
variants of TD(0) and Q-learning by allowing the step size
in the value function update to be a function of the sign
of the temporal difference error. For example, by making
the step size for positive errors slightly larger than the step
size for negative errors, the value of a particular state and
action will tend to be optimistic, yielding a risk-seeking
system. Recently, this algorithm was found to be consis-
tent with behavioral and neurological measurements taken

while humans learned a decision task involving risky out-
comes (Niv et al., 2012), suggesting that some form of
risk-sensitive TD may be present in the brain.

The connection between these types of methods and bio-
logical learning and control processes is an active area of
research in the biological sciences. For example, some neu-
roscience researchers have identified separate neural encod-
ings for expected cost and cost variance that appear to be
involved in risk-sensitive decision making (Tobler et al.,
2007; Preuschoff et al., 2008). Recent motor control exper-
iments suggest that humans select motor strategies in a
risk-sensitive way (Wu et al., 2009; Nagengast et al., 2010a,
2011). For example, Nagengast et al. (2010a) show that con-
trol gains selected by human subjects in a noisy control task
are consistent with risk-averse optimal control solutions.
There is also an extensive literature on risk-sensitive for-
aging behaviors in a wide variety of species (Kacelnik and
Bateson, 1996; Bateson, 2002; Niv et al., 2002).

7. Discussion and future work

In many real-world control problems, it can be advanta-
geous to adjust risk-sensitivity based on runtime context.
For example, systems whose environments change in ways
that make failures more or less costly (such as operat-
ing around catastrophic obstacles or in a safety harness)
or when the context demands that the system seek low-
probability high-performance events. Perhaps not surpris-
ingly, this variable risk property has been observed in a
variety of animal species, from simple motor tasks in
humans to foraging birds and bees (Bateson, 2002; Braun
et al., 2011).

However, most methods for learning policies by inter-
action focus on the risk-neutral minimization of expected
cost. Extending Bayesian optimization methods to cap-
ture policy-dependent cost variance creates the opportunity
to select policies with different risk-sensitivity. Further-
more, the ability to efficiently vary risk-sensitivity offers
an advantage over existing model-free risk-sensitive control
techniques that require separate optimizations and addi-
tional policy executions to produce policies with different
risk.

The variable risk property was illustrated in experiments
applying VBO to the problem of impact stabilization. After
a short period of learning, an empirical comparison of
policies selected with different CB criteria confirmed the
algorithmic predictions about the relative riskiness of each
policy. However, how to set the system’s risk-sensitivity for
a particular task remains an important open problem. In par-
ticular, we saw that when variance is very large for some
policies, risk-seeking optimizations must be done carefully
to avoid selecting policies with high variance and poor
average performance. Other risk-sensitive policy selection
criteria may be less susceptible to such phenomena.
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Several properties of VBO should be considered when
determining its suitability for a particular problem. First,
although the computational complexity is the same as
Bayesian optimization, O( N3), the greater flexibility of the
VHGP model means that VBO tends to require more initial
policy evaluations than standard Bayesian optimization. In
addition, like many other episodic policy search algorithms,
such as Bayesian optimization and finite-difference meth-
ods (Kohl and Stone, 2004; Roberts and Tedrake, 2009),
VBO is sensitive to the number of policy parameters: high-
dimensional policies can require many trials to optimize.
These algorithms are therefore most effective in problems
where low-dimensional policy representations are available,
but accurate system models are not. However, there is evi-
dence that policy spaces at least up to 15 dimensions can be
efficiently explored with Bayesian optimization if estimates
of the GP hyperparameters can be obtained a priori (Lizotte
et al., 2007).

Another important consideration is the choice of ker-
nel functions in the GP priors. In this work, we used the
anisotropic squared exponential kernel to encode our prior
assumptions regarding the smoothness and regularity of the
underlying cost function. However, for many problems the
underlying cost function is not smooth or regular; it con-
tains flat regions and sharp discontinuities that can be diffi-
cult to represent. An interesting direction for future work is
the use kernel functions with local support. Kernels that are
not invariant to shifts in policy space will be necessary to
capture cost surfaces that, e.g., contain both flat regions and
regions with large changes in cost. Methods for capturing
multimodality of the cost distribution are also important to
consider, especially in domains where unobservable differ-
ences in initial conditions can lead to qualitatively different
outcomes.

One straightforward way to extend VBO would be to
consider different policy selection criteria. In particular,
multi-step methods that select a sequence of n policy
parameters could be valuable in systems with fixed experi-
mental budgets. Osborne et al. have proposed a multi-step
criterion in the standard Bayesian optimization setting that
has produced promising results (Osborne et al., 2009; Gar-
nett et al., 2010). Other risk-sensitive global optimization
algorithms could also be conceived by using other meth-
ods to build the heteroscedastic cost model (Tibshirani
and Hastie, 1987; Snelson and Ghahramani, 2006; Kersting
et al., 2010; Wilson and Ghahramani, 2011). It would be
worthwhile to investigate whether these methods are more
appropriate for particular problem domains.

The VBO and RSSGD algorithms are connected by their
use of a learned heteroscedastic cost model to perform pol-
icy search. VBO uses this model to globally select policies,
whereas RSSGD uses it as a local critic to descend the gra-
dient of a risk-sensitive objective. Both algorithms have the
advantage of being independent of the dynamics, dimen-
sionality, and cost function structure, and the disadvantage
of their performance being dependent on the dimensionality

of the policy parameter space. We considered the possi-
bility of interweaving gradient descent with local offline
policy selection in dynamic lifting experiments with the
uBot-5. First, a policy was learned that exploited the sys-
tem dynamics to produce an efficient and reliable lifting
strategy. Then, starting from this learned policy, new local
cost models were fit and used to select translation-averse
and energy-averse policies. It is noteworthy that this kind of
flexibility is possible after so few trials, especially given the
generality of the optimization procedure. However, a limita-
tion of the implementation described is that generalization
to different objects or lifting scenarios would require sepa-
rate optimizations. The extent to which more sophisticated
closed-loop or model-based policy representations could
support generalization is an interesting open question.

The use of the cost model in the RSSGD algorithm is
somewhat restricted and there are several possibilities for
improvements. For example, some work has shown that
adjusting the covariance of the perturbation distribution
while learning can produce better performance (Roberts
and Tedrake, 2009). This idea is related to the covariance
matrix adaptation that is done in some cost weighted aver-
aging methods (Stulp and Sigaud, 2012). An interesting
direction for future work would be to use the learned local
model to adjust the sampling distribution by, e.g., scaling
the perturbation covariance by the optimized length-scale
hyperparameters of the VHGP model. In this way, param-
eters would be perturbed based on the inferred relative
sensitivity of the cost to changes in each parameter value.
Methods for using gradient estimates from the local critic to
update the policy parameters or, conversely, using gradient
observations to update the critic could also be explored.

8. Conclusion

Varying risk-sensitivity based on the runtime context is
a potentially powerful way to generate flexible control in
robot systems. We considered this problem in the context
of model-free policy search, where risk-sensitive param-
eterized policies can be selected based on a learned cost
distribution. Our experimental results suggest that VBO and
RSSGD are efficient and plausible methods for achieving
variable risk control.

Note

1. The log variance is used is to ensure positivity of the variance
function.
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