
Manipulation Planning using Model-Based Belief Dynamics

Shiraj Sen1 and Roderic Grupen1

Abstract— Planning in partially-observable domains require
an agent to fuse prior knowledge with observations to update
belief and to search for optimal plans that reduce uncertainty
with respect to the task. This requires a knowledge organization
that captures the underlying dynamics of the belief space
and its probabilistic dependency on actions. In this paper, we
present a functional representation for organizing knowledge
about the environment in terms of interaction statistics. The
representation utilizes a uniform, domain-general description
of state that applies to a wide variety of tasks. We show how a
planning algorithm can exploit this knowledge representation
to build plans directly in the space of control actions. Given
incomplete state information, the planner interacts with the task
to acquire the information required to solve it. We illustrate the
approach in multiple demonstrations of an object recognition
task.

I. INTRODUCTION

Traditionally, planning in robotics involves designing a
state representation and a model (implicit or explicit) for
the state transition dynamics, both of which are specific to
a particular task. The use of a task-specific representation,
however, makes it impossible to reuse the model for other
tasks. In order for robots to act autonomously, control
dynamics must be modeled in a manner that is applicable
to a wide variety of tasks and thus, support planning at run-
time to manage uncertainty. This paper addresses these dual
problems of modeling and planning by using a belief-space
representation. We use the empirical “state-action-next state”
representation that captures the probabilistic relationship
between belief and action in manipulation tasks organized
in terms of models of “objects”.

Real-world tasks require planners to search for solutions
in a partially observable state space. This often involves
modeling the dynamics of the task as a Partially Observable
Markov Decision Process (POMDP). POMDPs support rea-
soning about uncertain observations and stochastic actions
by modeling the state of the world as a hidden variable.
The policies learned from POMDP descriptions of a task
specify actions that maximize the expected reward given a
distribution over states. Unfortunately, the generic solution
of a POMDP has been shown to be PSPACE-complete [1].
Although the complexity bounds sound disheartening, the
worst case hardness does not mean that computing plans is
impossible. This is because many domains offer additional
structure that can ease planning difficulties. The Belief
Space Planner (BSP) that we introduce, exploits models of

1Shiraj Sen (shiraj@cs.umass.edu) and Roderic Grupen
(grupen@cs.umass.edu) are with the Laboratory for Perceptual
Robotics at the Department of Computer Science, University of Mas-
sachusetts Amherst, MA 01003, USA

belief space dynamics that describe objects. Our planner is
very useful in the case where complete prior object-action
models exist. Under these conditions, models provide the
necessary structure to plan efficiently in partially-observable
and initially unknown environments.

Hierarchical approaches to planning have been proposed
to speed up the search for plans. Since the work of Sac-
erdoti [2] on the ABSTRIPS method that generated a plan
in a hierarchy of abstraction spaces, many researchers have
suggested a hierarchical approach to interleaving planning
and execution [3]. Wolfe et al. [4] provided a task and motion
planner based on hierarchical transition networks (HTNs) [5].
Platt [6] showed that one can compute reasonable policies in
the belief space based on a local linearization of the belief
space dynamics. The controller then selects actions based
not only on the current most-likely state of the robot, but
on the information available to the robot. This approach is
promising, however in general belief space dynamics need
not be linear, and hence resulting policies are applicable
only in the vicinity of a locally stabilized region. Kaelbling
and Lozano-Pérez [7], [8] proposed a hierarchical planner
that sacrifices optimality quite aggressively, for efficiency, by
having a planner that makes choices and commits to them
in a top-down fashion in an attempt to limit the length of
plans that need to be constructed, and thereby exponentially
decreasing the amount of search required. Our approach is
similar to the above, in which the robot selects the best
possible action based on the current belief. However, the
actions the robot selects can both be informative (that manip-
ulates the mass of belief over states/actions) and functional
(creating mechanical artifacts that address the task).

II. MODELS

Our computational representation of knowledge is based
on a framework called the control basis [9] that makes
use of low-level controllers and their dynamics to learn
robot specific knowledge structures. The control basis is a
discrete, combinatorial basis for continuous multi-objective
control that is derived directly from the sensory, motor, and
computational embodiment of the robot. Primitive actions
in the control basis are combinations of potential functions
(φ ∈ Φ), sensory (σ ⊆ Σ), and motor resources (τ ⊆ T)
defined by three finite sets:

• Φ is a set of navigation functions whose gradients lead
asymptotically to fixed points [10].

• Σ is a set of feedback entities that can be computed by
applying operators to sensory signals.

• T is a set of motor units that actuate independent
degrees of freedom in the robot. A motor unit consists of

an equilibrium setpoint controller on a single degree-of-
freedom that accepts a reference value uτ . Higher-level
controllers submit patterns of real-valued references uτ
to synergies of motor units, τ ⊆ T .

In this work, we use the shorthand notations c or φστ to
describe closed loop controllers.

We use a three-valued classifier for discretizing the dy-
namics of a continuous time control action [11]. The state
γt of a controller c(φ, σ, τ) at time t, is given by

γt(c) =

− : φ has undefined reference
0 : |φ̇| > ε

1 : |φ̇| ≤ ε
(1)

where ε is a small positive constant [11].
In this state representation, ‘−’ indicates that the controller

is currently not applicable since the reference input signal
σ required to compute the gradient, is not present in the
feedback, ‘0’ indicates that the controller is making progress
but hasn’t yet reached its target fixed point, and ‘1’ denotes
convergence/quiescence evaluated relative to a small posi-
tive threshold, ε. The undefined reference state ‘−’ is an
absorbing state since the potential function has no gradient
in this state and hence can’t make progress towards the goal.
A collection of n distinct primitive control actions forms a
discrete state space sk = [γk1 · · · γkn] ∈ S at time k.

In our framework, there are two distinct types of actions
that share potential functions and effector resources, but are
distinguished by the source of their input signals : TRACK
and SEARCH. TRACK actions, φστ preserve a reference value
in the feedback signal that originate in the external envi-
ronment e.g., the position of a color feature on the image
plane. TRACK actions are guaranteed to achieve its objective
provided the potential function has a defined gradient (γ 6=
‘−’). However, in the absence of an external stimuli, the
potential function provides no means for the controller to
make progress. For example, a closed loop controller that
tracks a visual reference in its environment, using a camera
on a pan-tilt head, cannot achieve its objective if the sensory
reference is not directly present in the field of view of the
camera. In such cases, a robot needs to execute a sequence of
actions that can orient its sensors to regions where a sensory
reference for the control action is present.

SEARCH actions are of the form φσ̃τ—their input, σ̃, is
derived from probabilistic models describing distributions
over effector reference inputs (uτ) where TRACK-ing actions
have converged in the past (γ(φστ) = 1). Initially the
distribution Pr(uτ |γ(φστ) = 1) is uniform; however, as it
is updated over the course of many learning episodes, this
distribution will reflect the long term statistics of the run-time
environment. For example, such a controller can be used to
direct the field of view of a robotic system to look at places
where a color feature has been found in the past.

A. Control program

In this paper, we use hierarchical control programs (visual
tracking, touching, grasping, picking up, placing, orbiting,

and rotating objects) that were developed in previous work
using hierarchical reinforcement learning [12], [13].

A control program is defined by the tuple p = (π,M),
where π : S × A → [0, 1] is the policy indicating the
probability of taking an action a ∈ A in a state s ∈ S, and
M is a set of probabilistic models of the form Pr(uτ |γ(a) =
0∨1), where uτ is a vector of effector references inputs and
γ(a) is the action state. A defines the set of all available
control actions—primitive controllers c and control programs
p. The state of a control program is evaluated in a similar
fashion as that of primitive controllers by monitoring the
dynamics of the value function.

The control status observations made by the robot at any
time t is given by:

zti = {γt(ai)|ai ∈ A, γ ∈ {−, 0, 1}} (2)

The status of each control program captures a small part of
the dynamics of the environment that is conditionally de-
pendent on the system state. The status of several executing
control programs is partial evidence of the expected state of
the environment. We use a vector zi (i = 1, . . . , N) over N
such control status values as a surrogate for the underlyting
state. Associating a return status with every control program
allows a planner to construct sequential controllers at a
higher level of abstraction where the continuous state of
a temporally extended control program is classified into a
ternary representation (γ ∈ {−, 0, 1}).

B. Objects

Objects are modeled as spatial and temporal distributions
over the converged status of control programs. Figure 1
shows a graphical model that encodes the probabilistic de-
pendencies between variables comprising the object model.
An object o ∈ O induces a distribution over a set of M
mutually exclusive aspects. An aspect x ∈ X is a latent
variable that models patterns over the status of several control
programs. It implicitly captures the kinematic constraints
and the sensor geometry for a constellation of control
programs—sets of programs that can or cannot track stimuli
simultaneously in the environment. An aspect can include
feedback from a set of visually-referenced actions, together
with feedback from a set of force-referenced actions. The
features comprising a visual aspect are mutually consistent
with line of sight constraints (e.g., set of visual features
on an object that can be tracked simultaneously). Elements
of the haptic aspect are mutually consistent with kinematic
reachability constraints.

Each aspect x ∈ X induces a distribution over the state
of N -TRACKing programs. There can be multiple instances
of each aspect within an object. Each control program is
represented by a Bernoulli random variable γj describing
the state of each associated action. (γj = 0∨ 1, if the action
has a gradient, γ =‘-’, if the gradient is undefined).

The dependencies between the aspects (xt and xt+1) over
two time steps (t, t + 1) and the control program being
executed (at) is encoded by the two time slices of the
Dynamic Bayesian Network (DBN). This part of the model

Ot Ot+1

Xt+1Xt

γt+1γt

N N

at

Track

Fig. 1. Figure shows a Bayesian network model representing objects O
as a temporal distribution over aspects X . An aspect induces a distribution
over the state of N tracking programs (γj) as shown by the plate model.
The two time slices in the model show the logical dependencies between
aspects and an orienting action a. O, X and a are modeled as multinomial
random variables. γj is modeled as a Bernoulli random variable.

describes how executing an action on an object influences the
set of accessible control programs. For example, a hammer’s
handle affords the action of grasping, however if the handle
is out of reach, the robot might have to use a non-prehensile
tactile controller that pulls the hammer closer before it can
succeed in grasping it. In this case, “pulling” changes the
aspect of the object in a manner that supports the goal of
grasping. Modeling objects in the world in terms of the
properties derived from controllable actions and the spatial
relationships between them allows an agent to use the same
model for all interactions (and sequences thereof).

In [14], we presented results on learning a visual model of
the objects autonomously and using it for the task of visual
object recognition. Model learning will not be the focus of
this paper.

III. PLANNING

Since the true state1 st+1 of the system cannot be ob-
served, it must be inferred from observations zt+1 made after
taking action at. The observation is related to the state by the
likelihood function Pr(zt+1|st+1, at), which is proportional
to the probability that observation zt+1 is the result of taking
an action at to reach a particular state st+1. The probability
density function Pr(zt+1|at) of the observation is obtained
by marginalizing over all states

Pr(zt+1|at) =
∑
st+1

Pr(zt+1|st+1, at) Pr(st+1) (3)

The important quantity in this formalism is the action at.
Since the likelihood function Pr(zt+1|st+1, at) is condi-
tioned on the action, it is clear that actions influence obser-
vations. The goal is to update belief in the true state st+1,
given the observation zt+1.

Our planner selects actions that reduce the uncertainty of
the state estimate optimally with respect to the task. Entropy

1The state, st+1 described in this section should not be confused with
state s described in Section II.

measures the amount of uncertainty in the value of a random
variable st.

H(st) = −
∑
st

Pr(st) log(Pr(st)) (4)

The entropy is zero if the state is uniquely determined; it
reaches its maximum if all states are equally likely.

In information theory, mutual information (MI) defines
how much uncertainty is reduced in a random variable
(st) provided an observation (zt+1) is made. Since the
information flow depends on the action at, we need to define
conditional MI:

I(st; zt+1|at) = H(st)−H(st|zt+1, at) (5)

The optimal next action ât, given a belief over states
Pr(st) and observation model Pr(zt+1|st, at) is

ât = arg max
at

I(st; zt+1|at) (6)

Initially with no experience to draw on and before any
observations are made, Pr(s0) is initialized uniformly. How-
ever, as actions are executed by the planner to optimize
mutual information, new observations are used to update the
a posteriori probability of each state st,

Pr(st|z, a) =
Pr(z|st, a) Pr(st)

Pr(z|a)
(7)

In the next time step, the planner uses the set of a
posteriori probabilities as a priori probability for st. This
allows the planner to utilize its current belief to act optimally.

All tasks in our framework can be posed as the manipula-
tion of belief—condensing belief over objects (recognition),
aspects (pose recovery), or status of control programs (track-
ing an external stimulus). In the next few subsections, we
describe in detail how to use the same planner for building
plans for each of the tasks.

A. Belief over Objects

Object recognition is still an open problem. From the
choice of features to the actual classification problem, we are
still far from possessing a global recipe that would allow for
a complete discriminative approach to recognition. The large
majority of work on object recognition has been focused on
offline, database driven tasks. Probably the biggest challenge
that arises from using such databases is the inability to
exploit discriminative views of objects. Utilizing the belief-
space representation, the task of object recognition is de-
scribed as the process of selecting actions that maximally
reduce the uncertainty over objects—condensing belief over
objects given the aspect x. Since the aspect of an object is
a latent variable that needs to be inferred from the observa-
tions, we make use of the maximum likelihood estimate over
aspects. Using Equation 6, the optimal action to execute is
given by

ât = arg max
at

I(ot;xt+1|at) (8)

Using the definitions of entropies and our object model,
the conditional MI is given by

I(ot;xt+1|at) =
∑
ot

∑
xt+1

Pr(ot) Pr(xt+1|ot, at)

× log
(

Pr(xt+1|ot, at)
Pr(xt+1|at)

)
(9)

where, the maximum likelihood estimate over aspects,
xtML is utilized to compute the observation likelihood,
Pr(xt+1|ot, at) = Pr(xt+1|ot, at, xtML).

B. Belief over Aspects

The goal of certain planning tasks require manipulating
objects to achieve a particular pose. A pose of an object
implicitly defines a viewpoint on the object with respect to
the robot. This information is modeled by the latent aspect
variables in our probabilistic representation. Thus, the task
of re-orienting objects is described in our framework as
reducing belief over aspects to achieve a goal aspect. The
optimal action that maximally reduces the uncertainty over
aspects is given by Equation 6, where

I(xt; zt+1|at) =
∑
xt

∑
zt+1

Pr(xt) Pr(zt+1|xt, at)

× log
(

Pr(zt+1|xt, at)
Pr(zt+1|at)

)
(10)

Once the uncertainty over aspects is completely reduced, the
object model is used as a forward model to sequence a set
of actions to achieve the goal aspect.

C. Belief over Program Status

Certain planning tasks require achieving a particular state
for a control program without the need to recognize the
object. For example, if the task is to achieve a grasp, it is
not necessary to completely disambiguate the object before
performing the grasp action. Since the state of a control
program is observable, given a goal observation ẑt at time
t, the optimal action to choose is given by

ât = arg max
at

I(ẑt; zt+1|at) (11)

The conditional Mutual Information can once again be
computed from our object models. This shows that ex-
pressing tasks as manipulating beliefs over certain random
variables provides a consistent way of expressing tasks and
computing plans.

IV. EXPERIMENTS

In this paper, we explore in detail the capabilities of our
model and planner for the task of object recognition. The ex-
periment was conducted using the UMass uBot platform—a
two-wheeled dynamically balancing mobile manipulator with
two 4 degrees-of-freedom (DOF) arms and a trunk rotation.
The robot’s sensor package includes encoder feedback on
all 11 DOF and an ASUS RGB-D camera on a 1 DOF
head. Control is implemented in Robot Open Source (ROS)
publish-subscribe operating system [15].

Fig. 2. A flattened image of three of the boxes used in the experiments
showing the various ARtag features on each of its faces. It should be evident
from the images that certain features are repeated over multiple objects.

To illustrate the approach to belief-space planning in
its simplest form, an extremely simple experimental object
called the ARcube is employed. It consists of a roughly 28
cm cube made out of cardboard box, weighing about 0.25 kg
with distinctive ARtag surface markings chosen from a set
of 13 alternatives (A, B, C, D, E, M, T, 1, 2, 3, 4, 5, 6).
These ARtags were trained using the ARToolkit [16]. Each
of the ARcubes used in these demonstrations incorporate an
unique combination of six of these ARtags. Though the use
of ARtag features sound simplistic, the above 13 alternatives
provide a rich set of possible objects (in the order of 106)
that can be generated by choosing 6 of the ARtags. In
our experiments, the number of generated ARcube models
are varied from 10 to 1000. Figure 2 unfolds the surface
geometry of three of the ARcubes to illustrate the faces of
each box with the associated ARtag. Some of the tags are
repeated in multiple objects. These ambiguous features lead
to partially observable state, therefore, detecting single tags
is not enough for the robot to completely differentiate these
objects.

The model of the objects contain a set of visual tracking
actions (TRACKA, . . . TRACKT , TRACK1, . . . TRACK6) that
track each of the ARtag features. The models also contain a
set of actions that manually interact with the objects :

• GRASP : Moves the robot base and the arms to obtain
and track grasp forces in the end effector.

• ROTATE+Y : Rotate the box counterclockwise around
the Y-axis.

• ROTATE-Y : Rotate the box clockwise around the Y-
axis.

• ORBIT+Z : Orbit the box by moving counterclockwise
around the Z-axis of the box.

• ORBIT-Z : Orbit the box by moving clockwise around
the Z-axis of the box.

GRASP, ROTATE+Y, and ROTATE-Y are TRACK-ing actions
that depend on probabilistic search distributions describing
the placement of contacts that cause force closure and a

net moment on the object respectively. These distributions
are defined spatially in terms of sufficient combinations of
visual trackers. ORBIT+Z and ORBIT-Z are SEARCH actions
that reliably change the visual aspects by driving the mobile
manipulator to a new position and heading relative to the
object’s pose estimate. Figure 3 and Figure 4 show the
effect of executing the ROTATE+Y and ORBIT-Z actions
respectively on a box.

The task employs model-based belief dynamics coupled
with mutual information to select a pattern of actions that
optimally discriminate between multiple objects. The plan-
ning algorithm proceeds by first estimating the distribution
of belief over states defined by the objects. The estimated
state is used to compute the action that maximally reduces
uncertainty. Figure 5 shows how the a posteriori probability
and entropy over 10 objects change during one such execu-
tion of the planner. Initially, when the robot has made no
observations, it has an uniform belief over objects. However,
as the planner executes actions and makes new observations,
it fuses these observations with its belief to compute a new
posterior over objects. This process gets repeated until the
object has been recognized—which is given by the entropy
falling below a particular threshold.

This procedure leads to different plans based on the initial
presentation of the object and the history of the agent’s
observation. We performed 20 runs of the experiment with an
object chosen at random and placed in front of the robot at a
random pose. The robot was able to successfully recognize
the object among these small set of distractors 100% of the
time. When the number of possible objects was increased
from 10 to 100, there wasn’t any noticeable decrease in
performance of the planner. Figure 6 shows how the entropy
and the belief over 100 objects changed during the execution
of one such trial. Initially, when no observations have been
made, the planner assumes an uniform prior over all objects
(Pr(oi) = 1/100). However, the agent’s belief very quickly
converges on a few objects after the execution of the first
action.

Figure 7 shows how the planner’s uncertainty over the
100 objects change with the number of executed actions.
For the sake of clarity, only 5 trials are shown on the
plots. As is evident from the plots, the entropy decreases
monotonically with increasing actions. This indicates that the
information theoretic planner is making optimal decisions to
reduce uncertainty at every iteration.

Furthermore, since the planner only computes the next best
action to execute, the computation time required is minimal.
Figure 8 shows how the average planning time varies with
the number of available object models. All experiments were
conducted on a single quad-core machine with 16GB of
RAM. The machine performed both the vision processing as
well as the action selection. The planning code was written in
Python. As can be seen from the table, the planner can build
plans in real-time even for 1000 objects. This is because after
every observation, the planner searches for plans in a reduced
set of possible objects. Thus the planning speeds up with
increased number of observations. Figure 8 also tabulates the

average number of actions required to recognize the objects.
The actions are averaged over 20 trials. The table shows
that as the number of models increase, the performance of
the planner degrades. This can be attributed to the greedy
nature of the plans where only the action that maximally
reduces uncertainty over the next time step is chosen (as
opposed to planning a sequence of actions that optimally
reduces uncertainty).

V. CONCLUSION

This paper presents a Bayesian framework that can be used
by a robot to model its environment in terms of distributions
over the status of control programs. The knowledge accumu-
lated by the robot models the dynamics of the environment
that can be learned by direct interactions with the world.
Since the focus of the paper was on showing the strengths of
Belief Space Planning and action-based representations, the
simple models employed were not learned but hand-coded.
The experiments show that an information theoretic planner
coupled with a model for constructing belief space dynamics
efficiently generates all contingencies (given a complete
object model) for achieving the goal by executing the action
associated with robot’s present belief of the state. Expressing
goals as discrete assertions over the space of actions allows
a planner to search for plans in a discrete observation space.
As part of our future work, we are interested in studying
how such a planner can be extended to plan multi-step plans
(as opposed to one-step planning). We are also interested in
extending the plans as well as the models to multi-object
assemblies.

ACKNOWLEDGMENTS

This material is based upon work supported under
Grants NASA-GCT-NNH11ZUA001K and ONR-MURI-
N000140710749.

REFERENCES

[1] C. Papadimitriou and J. N. Tsitsiklis, “The complexity of markov
decision processes,” Math. Oper. Res., vol. 12, no. 3, pp. 441–450,
Aug. 1987. [Online]. Available: http://dx.doi.org/10.1287/moor.12.3.
441

[2] E. Sacerdoti, “Planning in a hierarchy of abstraction spaces,” Artificial
Intelligence, vol. 5, pp. 115–135, 1974.

[3] I. Nourbakhsh, “Using abstraction to interleave planning and ex-
ecution,” in Proceedings of the Third Biannual World Automation
Congress, 1998.

[4] J. Wolfe, B. Marthi, and S. Russell, “Combined task and motion
planning for mobile manipulation,” in ICAPS, 2010.

[5] D. Nau, O. Ilghami, U. Kuter, J. W.Murdock, D. Wu, and F. Yaman,
“Shop2: An htn planning system,” Journal of Artificial Intelligence
Research, vol. 20, pp. 379–404, 2003.

[6] R. Platt, R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Belief space
planning assuming maximum likelihood observations,” in Proceedings
of Robotics: Science and Systems, Zaragoza, Spain, June 2010.

[7] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in IEEE Conference on Robotics and Automation
Workshop on Mobile Manipulation, 2010.

[8] ——, “Pre-image backchaining in belief space for mobile manipula-
tion,” in International Symposium on Robotics Research (ISRR), 2011.

[9] M. Huber, “A hybrid architecture for adaptive robot control,” Ph.D.
dissertation, Department of Computer Science, University of Mas-
sachusetts Amherst, 2000.

http://dx.doi.org/10.1287/moor.12.3.441
http://dx.doi.org/10.1287/moor.12.3.441

Fig. 3. ROTATE+Y rotates the box counterclockwise around the Y-axis. The effect of taking the ROTATE+Y action is to re-orient the box making the
ARTag feature “6” move to the top of the box.

Fig. 4. ORBIT-Z re-orients the robot by moving it clockwise around the box. The effect of taking the ORBIT-Z action on this box is that the ARTag
feature “4” becomes visible.

Aspect 1 Aspect 2 Aspect 3 Aspect 4 Aspect 5

Aspect Obj_1 Obj_2 Obj_3 Obj_4 Obj_5 Obj_6 Obj_7 Obj_8 Obj_9 Obj_10 Entropy

Aspect 1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 1.000

Aspect 2 0.20 0.20 0.20 0.00 0.20 0.00 0.20 0.00 0.00 0.00 0.698

Aspect 3 0.00 0.00 0.33 0.00 0.33 0.00 0.33 0.00 0.00 0.00 0.477

Aspect 4 0.00 0.00 0.00 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.301

Aspect 5 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.000

Fig. 5. The robot performs the action sequence: TRACK-A→ROTATE-Y→ROTATE-Y→ORBIT+Z as part of the policy to reduce uncertainty over 10
objects. The planner fuses information from interactions with the object to update distributions of belief over objects until no uncertainty remains. The
table shows the posterior probability over objects after each new action-observation. The rightmost column of the table shows the entropy over the object
distribution after every state estimate.

[10] D. E. Koditschek and E. Rimon, “Robot navigation functions on
manifolds with boundary,” Advances in Applied Mathematics, vol. 11,
no. 4, pp. 412–442, 1990.

[11] S. Hart and R. Grupen, “Learning generalizable control programs,” in
Transactions on Autonomous Mental Development, Zaragoza, Spain,
2010, pp. 1–16.

[12] S. Hart, S. Sen, and R. Grupen, “Intrinsically motivated hierarchical
manipulation,” in Proceedings of 2008 IEEE Conference on Robotics
and Automation, Pasadena, CA, 2008.

[13] ——, “Generalization and transfer in robot control,” in Proceedings of
8th International Conference on Epigenetic Robotics, Brighton, UK,
2008.

[14] S. Sen, “Bridging the gap between autonomous skill learning and
task-specific planning,” Ph.D. dissertation, Department of Computer

Science, University of Massachusetts Amherst, 2013.
[15] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[16] H. Kato and M. Billinghurst, “Marker tracking and hmd calibration
for a video-based augmented reality conferencing system,” in
Proceedings of the 2nd IEEE and ACM International Workshop
on Augmented Reality, ser. IWAR ’99. Washington, DC, USA:
IEEE Computer Society, 1999, pp. 85–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=857202.858134

http://dl.acm.org/citation.cfm?id=857202.858134

Entropy: 2.0

0.476

Entropy: 1.175

Entropy: 0.476

Entropy: 0.0

Fig. 6. The robot performs the action sequence: TRACK-A→ROTATE-
Y→ORBIT-Z as part of the policy to reduce uncertainty over 100 objects
and recognize the object. The bottom row shows the entropy over the object
distribution after every state estimate.

Fig. 7. The plot shows the change in object entropy as a function of the
number of actions executed by the robot. The entropy is computed over 100
objects.

Entropy: 2.0

0.476

Entropy: 1.175

Entropy: 0.476

Entropy: 0.0

Number of

Objects

Average number

of actions

Average planning

time (in secs)

10 3.8 0.26

100 4.2 0.43

1000 5.8 2.29

Fig. 8. The table shows how the variation in performance of the planner
with the number of objects. The second column shows the average number
of actions required to recognize the object. The third column shows the
average time required by the planner to select each action.

	Introduction
	Models
	Control program
	Objects

	Planning
	Belief over Objects
	Belief over Aspects
	Belief over Program Status

	Experiments
	Conclusion
	References

