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Abstract— We propose a task representation for use in a
belief-space planning framework. The representation is based
on specialized object models that enable estimation of an
abstract state of a robot with respect to an object. Each
manipulation task is represented using a partition over these
states defined by the set of known object models. Solutions to
such tasks are constructed in a belief-space planner using visual
and/or manual interactions with objects that condense belief in
a target subset of the task partition. This partition integrates
belief over states into a task belief without altering the original
belief representation. As a result, sequences of tasks can be
addressed that inherit the complete estimate of state over the
entire history of observations. Demonstrations of the technique
are presented in simulation and on a real robot. Results show
that using this task representation and the belief-space planner,
the robot is able to recognize objects, find target objects, and
manipulate a set of objects to obtain a desired state.

I. INTRODUCTION

Robotic planners have to deal with uncertainty and partial
observability. Belief-space planners are often employed to
address these issues but can make it difficult to express
generic tasks. A uniform framework for addressing a full
range of manipulation tasks with these powerful techniques
remains a challenging problem.

This paper describes a task representation for belief-
space planning. The approach uses a planning framework
called the Active Belief Planner (ABP), which is based on
object models that enable estimation of an abstract state
of a robot with respect to an object or the environment.
This planning framework was used in previous work to
perform object recognition based on belief over the abstract
state using information theoretic measures to select the most
informative visual and manual interactions [1]. In this paper,
we generalize the planner to solve any task that can be
supported by the known object models. Tasks are defined
as goal subsets of a state partition. The planner then tries
to enhance the certainty that state estimates reside within
these subsets. By defining such a task partition, belief over
individual states can be aggregated into a task belief with
no changes to the underlying belief state. This supports a
more general task planner that preserves the state estimate
derived from the total history of actions and observations
over multiple tasks and continuous interaction.
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II. RELATED WORK

This paper uses a generalization of seminal contributions
from the active vision community [2, 3] that can be applied to
multi-modal perceptual information and to general-purpose
problem solving in an active belief planning framework [1].

A necessary component of a belief-space planner is a
means of propagating belief distributions through candidate
actions using a forward model. For example, Hogman et
al. use the action-effect relation to categorize and classify
objects [4]. Loeb and Fishel discuss how Bayesian Ex-
ploration can be used to construct queries to associative
memory structures of previous sensorimotor experiences [5].
Browatzki et al. use a similar action selection metric and
transition probabilities on a view sphere with a set of actions
that execute in-hand rotations [6]. Sen introduces affordance-
based object models called aspect transition graphs (ATGs)
that combine bag-of-features feature matching with a graph
to model action effects [7]. Ruiken et al. extend the ATGs by
adding geometric information and cost estimates to improve
forward modeling capabilities [1].

A popular approach for handling partial observability and
uncertainty in robotics is the use of partially observable
Markov decision processes (POMDPs). For example, Hsiao
et al. use a decision theoretic solution to a POMDP to
determine relative pose of a known object [8]. Optimal
solutions to POMDPs are provided by offline solvers that
compute an optimal policy but are generally intractable for
real robot problems. Online planners for POMDPs address
this problem by planning up to a finite horizon and then
choosing the best action at that plan depth [9, 10]. The size of
the state space required can still be prohibitive, however. To
scale these approaches, Castanon uses a hierarchical POMDP
to recognize many objects in a scene [11]. Sridharan et al.
introduce a hierarchical POMDP to plan visual operators
to recognize multiple objects in the scene [12]. Araya et
al. noted that the reward structure of POMDPs can be
prohibitive when the distribution of belief itself is critical
for the task [13]. In previous work, we used a belief-space
MDP with online planning to plan over the belief distribution
itself to perform recognition tasks [1, 7, 14]. These planners
can work with large model sets, however, they did not
handle planning over multiple objects at the same time. This
work uses the same planning framework, but employs a
hierarchical structure to overcome this deficiency.

Often the robotics community works on when to switch
between tasks [15, 16] rather than how to solve different
active perception tasks using a single planner. Grabner
et al. propose a single framework to solve both object
identification and object categorization in object recognition



problems [17]. Lai et al. propose a scalable tree-based ap-
proach to solve category recognition, instance recognition,
and pose estimation [18]. These methods, however, are not
active recognition algorithms, and therefore, they do not
interact with the environment to reduce the uncertainty. We
combine active perception with the ability to switch between
tasks.

III. TECHNICAL APPROACH

Our planning framework extends a previous version that
uses a belief-space planner and a population of forward
models to track the belief over the state of the interaction
between the robot and the world. We propose a hierarchical
planning structure to overcome complexity of environments
with multiple objects. A task interpreter is introduced to
generalize task definitions in belief-space. The following
sections provide details on the forward models from [1], the
hierarchical organization, the task interpreter, examples of
task types and their partitions, and the resulting belief-space
planner.

A. Aspect Transition Models

To model the state with respect to objects in the environ-
ment, we use aspect transition graphs (ATGs). These models
are centered around the concept of aspects. In general, only a
subset of the features attributed to an object can be detected
from any given sensor geometry. These subsets of features
define the aspect of the object. Aspects are used to specify
nodes, called aspect nodes, in a multi-graph where edges
represent actions that cause probabilistic transitions between
the aspect nodes. Actions are implemented as controllers
with parameters and estimates of the cost of the action.
Multiple aspect nodes in an ATG can share identical aspects
that can only be differentiated by the outcome of informative
actions. Additionally, geometric information in the models
can be used to predict sensor geometries for new observations
and support pose estimation. ATG models can be hand-
built or autonomously learned by the robot [14, 19–21]. The
models used in this work are hybrids, wherein nodes and
edges associated with visual actions were learned and those
for manual actions were hand-built.

A Dynamic Bayes Net (DBN) is used as a recursive,
hierarchical inference engine in which objects o generate
aspect nodes x that then generate observations z that can
be viewed from a single sensor geometry. The DBN fuses
the history of observations and actions a into a maximum
likelihood distribution over aspect nodes. The belief bel(x)
over the aspect nodes of all known ATG models is used as
state for the belief-space MDP. The ATG provides forward
models p(xt+1|xt, at) and information for observation mod-
els p(zt|xt) that are used for the belief update.

B. Hierarchical Planning

In general, tasks can involve multiple objects. Planning
over all objects at once can become computationally ex-
pensive due to the combinatorial nature of the decision

space [11]. Therefore, we cluster features into spatial hy-
potheses hk based on the compatibility of their spatial
distributions with known object models. The planner can then
probabilistically reason over one object hypothesis at a time.
The complexity of the planning algorithm is O(|K||A||X|2),
where K is the set of independent hypotheses, A is the set
of eligible actions for each hypothesis, and X is the set of
aspect nodes (Alg. 1). The number of hypotheses is expected
to be roughly the number of objects in the scene.

C. Belief-Space Planning with Task Interpreter

Based on observations made in the environment, the
robot tracks the distributions of belief over each of the
k hypotheses. Using segmentation techniques, observations
are evaluated to match to existing hypotheses.

The distribution over objects, and thus ATGs, is used to
propagate belief forward over multiple actions. For each of
the k hypotheses, given a belief over aspect nodes bel(xkt )
and the executed action at, the belief is updated by

bel(xkt+1) =
∑
xk
t

p(xkt+1|xkt , at)bel(xkt ),

where bel denotes that the posterior is due solely to action at.
The planner evaluates all candidate actions and predicts the
most informative next action. After this action is executed,
new observations are matched to aspect nodes to calculate
p(zkt+1|xkt+1) based on the geometric constellation of features
and observation covariances. Our framework uses a Hough
transform-based approach described in [1]. Incorporating
new observations yields the posterior belief

bel(xkt+1) = η p(zkt+1|xkt+1) bel(x
k
t+1), (1)

where η is a normalizer.

Task Partitions: In previous work, we used the entropy of
posterior belief distributions over objects to select optimal
actions for object recognition [1]. The technique presented
in Section III-D generalizes the ABP to any task that can be
expressed as a partition over the set of states (aspect nodes)
using a task interpreter.

The ABP can plan over any level of the hierarchical DBN
(objects, aspect nodes, or features). Assuming a “complete”
ATG for all objects in the model space, any task that can
be expressed using actions comprising the edges in the ATG
can be specified by defining a partition C over aspect nodes
of the ATG. This partition aggregates belief on the aspect
nodes into targeted subsets for the task. Most tasks result
in a partition with two subsets: all aspect nodes that do and
that do not satisfy the task specifications. For other tasks,
the aspect nodes may be split into n different subsets to,
for example, recognize an object within a model space of
n objects.

The belief over the partition C can be calculated by
summing the belief over aspect nodes contained in each
subset c:

bel(c) =
∑
x∈c

bel(x).



We use notation c(x) to denote the specific subset of C
an aspect node x belongs to. This mapping from an aspect
node x to the corresponding subset c is done in constant time
and allows the whole belief aggregation over the subsets of
C to be calculated in linear time. Example task types are
found in Sections III-D.1–III-D.4.

Information Gain: Standard information-based metrics
can be applied in a belief-space planner to choose the next
best action. The choice of the metric changes the behavior
of the robot. For example, minimizing the entropy,

H(ct) = −
∑
ct

bel(ct) log (bel(ct)),

causes the belief-space planner to pick actions that efficiently
condense belief into the subset c that best represents the his-
tory of observations. If the model space contains the correct
object, this corresponds to a recognition task. Alternatively,
a target distribution T (c) can be specified over all c. In
this case, minimizing the Kullback-Leibler (KL) divergence
between T (c) and the current belief bel(ct),

DKL(T (c)||bel(ct)) =
∑
ct

T (c) log

(
T (c)

bel(ct)

)
,

results in actions that steer the robot toward the target state(s)
while automatically balancing information gathering actions
and actions towards the task goal. Tasks defined this way are
most general and can include recognition at the object and
aspect node levels.

Extending the ABP for Reconfigurable Tasks: To evaluate
actions, the belief over aspect nodes is rolled out based
on the forward model provided by the ATGs. The time
required to expand all belief nodes is dependent on the
distribution of belief and quickly decreases when the belief
condenses on fewer aspect nodes. The search depth of the
algorithm is variable and is automatically increased as belief
condenses and forward planning becomes less expensive. For
simplicity, the resulting algorithm is shown for a 1-ply search
in Algorithm 1.

For each object hypothesis hk and available action at,
the algorithm performs a control update to calculate
the expected belief bel(xkt+1) after taking action at
(Line 8). Transition probabilities for the process update
p(xt+1|xt, at) are stored in the edges of the ATG. We
use threshold αmaxxk

t+1
(bel(xkt+1)) (relative to the highest

current belief) to exclude beliefs that come from expected
aspect nodes with low probability (Line 10). The α term
is a single value from range (0, 1] set by the user at the
beginning (Line 1). For all experiments, we used α = 0.1.
The aspect geometry inside the ATG provides an expected
observation zt+1 for each expected future aspect node xt+1

(Line 11). After performing an observation update following
Equation 1 (Line 13), the belief over the corresponding
subset of the task partition ckt+1(x) is updated (Line 14).
The expected information gain IG is calculated for each
object hypothesis and action combination (Lines 15–19) with

Algorithm 1 Active Belief Planner (shown for 1-ply)
1: α = Future observation update threshold
2: τhk,at

= 0 for all hk, at
3: IG = {}
4: for all hk do
5: for all at available in ATG do
6: bel(ckt+1) = 0 for all ckt
7: for all xkt+1 do
8: bel(xkt+1) =

∑
xk
t
p(xkt+1|xkt , at)bel(xkt )

9: for all xkt+1 do
10: if bel(xkt+1) > αmaxxk

t+1
(bel(xkt+1)) then

11: zkt+1 ← ATG(xkt+1)
12: for all xkt+1 do
13: bel(xkt+1) = η p(zkt+1|xkt+1) bel(x

k
t+1)

14: bel(ckt+1(x)) += bel(xkt+1)
15: m =M(ckt+1, T (c))
16: else
17: m =M(ckt , T (c))
18: τhk,at = τhk,at + bel(xkt+1)m
19: IGhk

(ckt , at) =M(ckt , T (c))− τhk,at

20: IG = IG ∪ IGhk
(ckt , at)

21: while arg maxhk,at
IG is not feasible do

22: h∗k, a
∗
t = arg maxhk,at

IG
23: IG = IG \ IGh∗

k
(ckt , a

∗
t )

24: return arg maxhk,at
IG

M(ct, T (c)) denoting the place holder for the information-
based metric employed (e.g. entropy or KL divergence). The
action with the highest expected information gain is chosen.
Further details on the planner and the pruning methods used
can be found in [1] but are not necessary for understanding
the system.

D. Task Types

The proposed approach can represent a large number of
tasks and task types. In this section, we define four basic
task types commonly found in robotics problems. These are
only samples of possible tasks that can be represented in this
framework; tasks are only limited by the expressiveness of
the known ATG model. Each type can be differentiated by
the way the task partition defines the task for the planner. A
graphical example of task partitions for the four task types is
shown in Figure 1. Demonstrations of these tasks are shown
in Section IV-A.

1) Recognition Task: In a recognition task, the robot is
presented with one or more object(s) of unknown identity.
The robot has ATG models for n different objects and has
to identify the probability that the data supports each of the
known ATG models. The robot can use any action present in
all of the ATGs to investigate and manipulate the object(s).
The goal is to condense belief into a single subset of the
task partition defined by objects in the model space. In other
words, if all objects in the scene should be identified, the
belief for each hypothesis hk must condense on one object
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Fig. 1. A simplified DBN for three objects is shown here. Task partitions for examples of each task type are shown below. For the recognition task, all
aspect nodes for each object are grouped into one subset of the partition, resulting in three subsets in the partition (colored blue, green, and purple). For
the localization task, the task partition contains single-element subsets, where the element is one aspect node from one of the three objects, resulting in
(i+ j+ k+3) subsets (uncolored for readability). For the find task, we show an example of finding an object with a ‘3’ feature on top. The task partition
for this contains two subsets: one has all the aspect nodes of two objects where at least one aspect node has the ‘3’ feature (colored blue) and the second
has all the remaining aspect nodes (colored green). Finally, for the orient task, we show an example for orienting an object such that the ‘3’ feature is
on top. This task partition also contains two subsets. One has all the aspect nodes where the ‘3’ feature is on top (colored blue) and all remaining aspect
nodes belong to the second (colored green).

identity. This task type can be expressed mathematically as

∀hk [max
j
bel(ckj (x)) > β], (2)

where β is some threshold for the belief. The task partition C
over all aspect nodes from all ATGs splits the aspect nodes
of each ATG model into a separate subset, resulting in a
partition with n different subsets cj :

cj = {xi|p(oj |xi) = 1} for 0 ≤ j < n.

The row in Figure 1 labeled ‘Object Recognition’ illustrates
this partition.

2) Localization Task: A localization task establishes the
pose with respect to features of one or more object(s)
encoded in aspect nodes. The robot is presented with a
single sensor view of either known or unknown identity.
For each hypothesis, the robot has access to |X| aspect
nodes for all n ATG models and has to identify which
known aspect node xi, 0 ≤ i < |X|, corresponds to the
constellation of features detected in this single view. Again,
the robot can use any action available in the ATG models to
investigate and manipulate the object(s). This task type has
the same mathematical formulation as recognition (Eq. 2)
with a different task partition. The task partition C for
localization divides each aspect node for all ATG models into
separate subsets, resulting in a partition with |X| different
subsets cj :

cj = {xi} for 0 ≤ j < |X|.

Once belief is condensed on an aspect node, the robot knows
which object it is sensing and where it is relative to that
object. An example of a resulting partition can be found in
the row labeled “Localization” of Figure 1.

3) Find Task: Often the specific identity of object(s) or
aspect(s) is not important. Instead, the utility of an object for
a task can be based on a subset of its properties such as visual
appearance, haptic responses, or interaction possibilities.
Thus, a robot can be asked to find a suitable object—one
that contains at least one aspect node that satisfies the task
specifications.

We define the find task as follows: the robot is presented
with one or more object(s) of either known or unknown
identity and has access to n known ATG models. The robot
interacts with the object(s) until it is certain that at least one
object satisfies the task specifications. This can be expressed
mathematically as

∃hk [bel(ck1) > β]. (3)

The task partition C splits all aspect nodes into two subsets—
suitable (c1) and not suitable (c0):

c1 = {xi|∃xj∃ok [ p(ok|xi) = 1∧ (4)
p(ok|xj) = 1∧
y(xj) = 1 ]},

c0 = X \ c1 (5)

with

y(x) =

{
1 aspect node x satisfies task
0 otherwise.

(6)

Both reduction of entropy or KL divergence over bel(c(x))
work as metrics to guide the planner. Given one unknown
object, the planner determines the suitability of the object
for this task. If presented with more unknown objects, it
will investigate the most promising object(s) first in order to
find a suitable one.



4) Orient Task: The orient task is a find task with the
added specification of the configuration that the object should
have with respect to the robot. It uses the same mathematical
formulation as in Equation 3. The same function y(x) from
the previous task (Eq. 6) is also used, but only matching
aspect nodes x are considered as task success (as opposed
to all aspect nodes of objects with at least one matching
aspect node as in Equation 4):

c1 = {xi|y(xi) = 1}, (7)

c0 = X \ c1. (8)

By selecting actions that condense belief in c1 using KL
divergence as the metric, the robot can manipulate objects
into a desired configuration to satisfy task requirements
without having to know the precise identity of the object.

IV. DEMONSTRATIONS

In order to demonstrate the capabilities of this belief-
space planning framework, we use two different setups
involving the uBot-6 mobile manipulator [22]. The first setup
demonstrates solving two of the task types described in
Section III-D: recognition and find. The second setup shows
how the aforementioned task types can be sequenced for the
robot to solve a copying task.

The model set used for these demonstrations consists of
ATG models for ARcubes together with FLIP, LIFT, PUSH,
and ORBIT actions detailed in [1]. ARcubes are rigid cubes
whose size can be adjusted to meet the requirements of
the robot geometry. A single ARtag is centered on each
of the six faces of the cube. An open-source ARToolKit
software is available for detecting and localizing the tags
as a proxy for more general purpose visual processing [23].
Visual observations of these features detect the location of
the center of each tagged face. When viewing an ARcube
square-on, we can refer to the locations of the tags with ‘top’,
‘front’, ‘right’, ‘back’, ‘left’, and ‘bottom’. ARcubes are only
partially observable from any single sensor geometry. The
partial observability and the natural sparseness of features
on any one cube lead to a large degree of ambiguity.

A. Exhibition of Planning for Three Example Tasks

As described in previous sections, assigning different
partitions to a task can change the distribution over which
the ABP plans, and thus, reconfigure the planner for different
tasks. We define task specifications for examples of a rec-
ognize task and two different find tasks, and run the planner
using their respective task partitions in simulation. We use
30 ATG models for ARcube objects. This model set contains
16 visually unique cubes. Some of these cubes have up to
six eccentrically weighted counterparts, which are visually
identical and can only be differentiated through the transition
dynamics of manual actions. For each case, we provide
rollouts of the belief over the subsets ci of partition C.
Figures include the belief over objects to illustrate how the
subsets of C are composed. Each oi is colored based on the
subset of C to which it belongs.

1) Recognition Task – “Identify an object”: For the
recognition task, we present the robot with an unknown
object. After the initial observation, the robot uses the ABP
to select next best actions to execute until the object has been
identified. In Figure 2, the belief over the object identity can
be seen for several time steps until the object is correctly
identified as o24. The aspect nodes of each object form a
separate subset ci, and therefore the belief over c is equal
to the belief over the corresponding objects oi. It took five
actions for the belief to condense completely on one object.

...

Fig. 2. Example task to recognize an unknown object: a condensed rollout
of the belief over object models oi is shown. The belief over c is equal
to the belief over the corresponding objects oi. Therefore, we refrain from
coloring oi based on their membership in c for readability.

2) Find Task – “Find a suitable object”: We demonstrate
two examples of the find task to showcase two common
scenarios.

The first task is to find an object matching ATG model o24.
The robot is presented with an unknown object and needs to
determine if this object is indeed object o24. The rollout of
the beliefs over subsets c and the object identity o can be
seen in Figure 3. The color indicates the subset c to which the
aspect nodes of each object belongs. Here, the aspect nodes
of o24 belong to c1 (blue), while all other aspect nodes belong
to c0 (green). The robot is presented with the same object as
for the recognition example in Figure 2. The planner chooses
a different sequence of actions since it can focus on o24
without having to worry about telling it apart from all the
other object models, resulting in fewer actions to reach task
completion.

The second task is to find an object that could be oriented
such that a set of features is in the correct relative position to
the robot. In this example, ARtag ‘1’ should face the robot,
‘4’ should be on top, and ‘2’ should be on the bottom of
the cube facing the floor. The identity of the object is not
important. The subsets c defining the task can be seen in
Figure 4 together with rollouts of the beliefs over c and o.
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Fig. 3. Example task to find an object matching a specific ATG model
(o24) provided as the task specification: a rollout of belief over subsets c
is on the left. To visualize how subsets c are composed, the belief over
objects o is shown on the right. Target subset c1 contains all aspect nodes
of object o24 (blue); those of all other objects are in c0 (green).
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Fig. 4. Example task to find an object with matching features: a rollout of
belief over subsets c is on the left. To visualize how subsets c are composed,
the belief over objects o is shown on the right. Target subset c1 contains
all aspect nodes of objects that contain the necessary features and can be
oriented to expose them (blue); those of all other objects are in c0 (green).

The task succeeds without the belief condensing over the
identity of the object at hand; the robot can focus on what
matters for the task.

B. Sequencing Find and Orient Tasks for Structure Copying
In this setup, uBot-6 is presented an assembly consisting

of two ARcubes. The robot is required to observe the target
objects and reproduce the structure in a staging area. Both the
original assembly and staging area for the copied structure
are known to the robot and contain visual markers on the
wall as pose guidance fiducials. For simplicity, the task
specification is only based on observations from a single
vantage point (one aspect). In general, the task can be based
on constraints from a history of observations. For example,
the robot could take observations from different vantage
points and interact with the objects in the target assembly
to gather more information in order to replicate it more
precisely. Figure 5 shows a side-by-side comparison of the
target assembly and the assembly reproduced by the robot.
For this experiment, the robot needs to pick-and-place two
ARcubes in the designated staging area. We use our proposed

Fig. 5. Side-by-side comparison of the assembly template (left) and the
assembly reproduced by the robot (right). The robot observes the assembly
template and copies it in the staging area using objects that it determines
to be appropriate from the search scene (Fig. 6).

algorithm to perform pick-and-place actions by sequencing
task types that were presented in Section III-D. The ATG
model set used for this demonstration contains 14 object
models. The robot randomly chooses the first object to obtain

Fig. 6. Four ARcubes are placed in the search scene. The robot uses a
model set of 14 ARcubes. It establishes hypotheses for each of the four
ARcubes and plans over them according to the task partitions defined.
11 object models afford the ‘4-0’ aspect and 11 afford the ‘5-3’ aspect.

for pick-and-place. For the situation presented in Figure 5,
the robot chooses to pick-and-place the right most object
first. To do this, a hand-built finite state machine runs a
find task to locate an ARcube, from the search scene of
four ARcubes (Fig. 6), that affords an aspect with ARtag ‘0’
in front and ARtag ‘4’ on top (‘0-4’ aspect). Based on the
observation of the assembly template, the robot assigns the
partition C following Equations 4–6: y(xi) = 1 if xi is a
‘0-4’ aspect. Once the robot is certain that it has an ARcube
with those feature specifications (which takes a single ac-
tion), it executes an orient task to manipulate the cube from
the find task such that ARtag ‘4’ is on top and ARtag ‘0’ is in
front (six actions). The robot assigns the partition C for this
orient task using Equations 6–8, where y(xj) = 1 if xj is a
‘0-4’ aspect. After the robot accomplishes the orient task, it
uses a pick-and-place controller to grasp, transport, and drop
off the cube at the designated location in the staging area.

After placing the first object, the robot goes through
the same sequence of tasks for the second object. For the
situation presented in Figure 5, the robot executes a find task
for an ARcube that affords a ‘5-3’ aspect (one action), an
orient task to reveal the ‘5-3’ aspect (two actions), and a
pick-and-place to drop off the cube in the staging area.
Figure 7 shows the belief over time in the subsets that
contain the ‘4-0’ aspect (left) and ‘5-3’ aspect (right). For
this demonstration, the execution time heavily dominated the
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Fig. 7. These plots show the evolution of belief over the goal subset of the
task partition for the objects that were copied (left: first object (‘4-0’); right:
second object (‘5-3’)). The top and bottom plots show the task beliefs for
each hypothesis in the scene for the find and orient tasks, respectively. For
the first object, the robot did not register one of the objects in the scene, so
it only establishes three hypotheses. The belief for the orient task exceeds
the threshold after action #7. For the second object, since the robot has
already interrogated the scene, it starts with a higher belief prior for the
remaining hypotheses. The belief for the orient task exceeds the threshold
after action #3.

planning time, which was less than 1 sec for each action on
average. Following the sequence of tasks as presented, the
robot was able to successfully reproduce the target assembly
as shown in Figure 5.

V. CONCLUSION

We proposed and demonstrated a novel task representation
for performing configurable information-gathering tasks with
a single belief-space planner. The planner handles multiple
objects in a hierarchical manner, allowing it to probabilis-
tically reason over one object at a time. Any task that
can be modeled by the underlying representation of belief
dynamics (ATGs) can be expressed in the form of partitions
over belief states. This enables the robot to switch between
tasks while preserving state information. The choice in the
type of information metric driving the planner towards task
completion changes the behavior of the robot.

Currently, ATGs only contain aspect nodes for single
objects, therefore any task partition over aspect nodes can
only express tasks with respect to a single object. In order
to handle tasks involving several objects, e.g. assemblies,
they have to be decomposed into a sequence of single object
tasks. This can be accomplished with a hand-built finite state
machine (as we used in the presented structure copying task)
or a higher-level planner. In the future, we would like to
investigate how this framework can be used to solve multi-
object tasks directly. We also plan to extend the task rep-
resentation to combine multiple task specifications that can
simultaneously influence the ABP. This can enable a robot
to, for example, find several different parts simultaneously.
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